
6

INVARIANT MANIFOLDS

34. The Theory of Kolmogorov–Arnold–Moser

KAM theory, which proves the existence of many invariant tori for systems close to inte-

grable, is one of the greatest achievements in Hamiltonian dynamics. It has historical roots

going back to Weierstrass who, in 1878, wrote to S. Kovalevski that he had constructed

formal power series for quasi-periodic solutions to the planetary problem. The denomi-

nators of the coefficients of these series involved integer combinations of the frequencies

of rotation of the planets around the sun. These denominators could be close to zero and

hence impede the convergence of the series. Weierstrass advised Mittag-Leffler to make this

problem of convergence the subject for a prize sponsored by the king of Sweden. In the

271 pages work (Poincaré (1890)) for which he won the prize, Poincaré does not solve the

problem completely, and his tentative answer to the convergence is negative. In Poincaré

(1899) , he speculates on the possibility of such a convergence, given appropriate number

theoretic conditions, but still deems it improbable. It was therefore a significant event when

Arnold (1963) (in the analytic, Hamiltonian context) and Moser (1962) (in the differentiable

twist map context) gave, following the ideas of Kolmogorov (1954), a proof of existence of

quasi-periodic orbits on invariant tori filling up a set of positive measure in the phase space.

We can only give here a very limited account of this complex theory, and refer to Moser

(1973) and de la Llave (1993) for introductions as well as Bost (1986) for an excellent

survey and bibliography. There are many KAM theorems, the most applicable ones being

often the hardest ones to even state. We present here a relatively simple statement, cited in

Bost (1986).
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Theorem 34.1 (KAM for symplectic twist maps ) Let f0 be an integrable symplectic

twist map of Tn × IDn of the form:

f0(q,p) = (q + ω(p),p)

where IDn is a disk in IRn and ω : IDn �→ IRn is C∞ (since f0 is twist, Dω is

invertible). Let p0 be an interior point of IDn. Suppose that the following condition

is satisfied:

Diophantine condition: there are positive constants τ and c such that:

(34.1) ∀k ∈ ZZn+1\{0},

∣∣∣∣∣∣
n∑

j=1

kjωj(p0) + kn+1

∣∣∣∣∣∣ ≥ c


n+1∑

j=1

|kj |



−τ

Then there is a neighborhood W of f0 of C∞ exact symplectic maps such that, for

each f ∈ W , there exists an embedded invariant torus Tf � Tn in the interior of

Tn × IDn such that:

(i) Tf is a C∞ Lagrangian graph over the zero section,

(ii) f
∣∣
Tf

is C∞ conjugated to the rigid translation by ω(p0),

(iii) Tf and the conjugacy depend C∞ on f .

Moreover the measure of the complement of the union of the tori Tf (p0) goes to 0

as ‖f − f0‖ goes to 0.

Remark 34.2

1) The diophantine condition (34.1) is shared by a large set of vectors in IRn. As an example,

when n = 1, the set of real numbers µ ∈ [0, 1] such that |µ− p/q| > K/qτ , τ > 2 for

some K is dense in [0, 1] and has measure going to 1 as K goes to 0.

2) The most common versions of KAM theorems concern Hamiltonian systems with a

Legendre condition. In Chapter 7 we show the intimate relationship of such Hamiltonian

systems with symplectic twist maps. It therefore comes as no surprise that KAM theorems

have equivalents in both categories of systems. Note that there are isoenergetic versions of

the KAM theorem for Hamiltonian systems, where the existence of many invariant tori is

proven in a prescribed energy level (see Broer (1996), Delshams & Gutiérrez (1996a)).

3) One important contribution in Moser (1962) was his treatment of the finitely differentiable

case: he was able to show a version for n = 1 (twist maps) where f0 and its perturbation
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are Cl, l ≥ 333 instead of analytic. This was later improved to l > 3 by Herman (1983) and

in higher dimension n, to l > 2n+ 1 (at least if the original f0 is analytic).

4) There is a version of the KAM for non symplectic perturbations of completely integrable

maps of the annulus, called the Theorem of translated curves, due to Rüssmann (1970). It

states that, around an invariant circle for f0 whose rotation numberω satisfies the diophantine

condition (34.1) (only one j in this case), there exists a circle invariant by ta ◦ f for a

perturbation f of f0 and ta(x, y) = (x, y + a), which has same rotation number as the

original.

5) One may wonder if, among all invariant tori of a symplectic twist map close to integrable,

the KAM tori are typical. KAM theory says that in measure, they are. However Herman

(1992a) (see also Yoccoz (1992)) shows that, for a generic symplectic twist map close to

integrable, there is a residual set of invariant tori on which the (unique) invariant measure

has a support of Hausdorff dimension 0 (and hence cannot be a KAM torus). Things get

even worse when the differential Dω in Theorem 34.1 is not positive definite: there may

be many invariant tori that project onto, but are not graphs over the 0–section, and this for

maps arbitrarily close to integrable (see Herman (1992 b)).

6) KAM theory implies the stability of orbits on the KAM tori, hence stability with high

probability. But in “real situations” it is impossible to tell, for lack of infinite precision

on the knowledge of initial conditions, whether motion actually takes place on a KAM

torus. Nekhoroshev (1977) provides an estimate of how far a trajectory can drift in the

momentum direction over long periods of time: If H(q,p) = h(p) + fε(q,p) is a real

analytic Hamiltonian function on T ∗Tn with fε < ε (a small parameter) and h(p) satisfies

a certain condition (steepness) implied by convexity, then there exist constants ε0, R0, T0

and a such that, if ε < ε0, one has:

|t| ≤ T0 exp[(ε0/ε)a]⇒ |p(t)− p(0)| ≤ R0(ε/ε0)a.

With a (quasi) convexity condition instead of the steepness condition, Lochak (1992) and

Pöshel (1993) showed that the optimal a is 1
2n . Delshams & Gutiérrez (1996a) present

unified proofs of the KAM theorem and Nekhoroshev estimates for analytic Hamiltonians.

Whereas we cannot give a proof of the KAM theorem in this book, the following theorem

(Arnold (1983)) offers a simple model in a related situation in which the KAM method can
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be applied in a less technical way.This will allow us to sketch very roughly the central ideas

of the method.

Theorem 34.3 There exists ε > 0 depending only on K, ρ and σ such that, if a is

a 2π –periodic analytic function on a strip of width ρ, real on the real axis with

a(z) < ε on the strip and such that the circle map defined by

f : x �→ x+ 2πµ+ a(x)

is a diffeomorphism with rotation number µ satisfying the diophantine condition:

|µ− p/q| > K

q2+σ
, ∀ p/q ∈ Q

then f is analytically conjugate to a rotation R of angle 2πµ

Sketch of proof: We seek a change of coordinates H : S1 → S1 such that:

(34.2) H ◦R = f ◦H

write H(z) = z + h(z), with h(z + 2π) = h(z). Then (34.2) is equivalent to

(34.3) h(z + 2πµ)− h(z) = a(z + h(z)).

Since a(z) < ε, h must be of order ε as well and thus, in first approximation, (34.3) is

equivalent to:

(34.4) h(z + 2πµ)− h(z) = a(z)

Decomposing a(z) =
∑

ake
i2πkz, h(z) =

∑
bke

ikz in their Fourier series and equating

coefficients on both sides of (34.4) we obtain:

bk =
ak

ei2πkµ − 1

where we see the problem of small divisors arise: the coefficients bk of h may become very

big if µ is not sufficiently rational.

It turns out that, assuming the diophantine condition and using an infinite sequence of

approximate conjugacies given by solutions of (34.4), one obtains sequences hn, an and

corresponding Hn, fn = H−1
n ◦ f ◦Hn which converge to H,R for some H . The domain
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of hn and fn is a strip that shrinks with n but in a controllable way. This iterative process of

“linear” approximations to the conjugacy can be interpreted as a type of Newton’s method

for the implicit equation F(f,H) = H−1 ◦ f ◦H = R (given f , find H) and inherits the

quadratic convergence of the classical Newton’s method: R − F(fn, Hn) = O(ε2n) (see

Hasselblat & Katok (1995) Section 2.7.b). ��

35. Properties of Invariant Tori

The previous section showed the existence of many invariant tori for symplectic twist maps

close to integrable. These tori are Lagrangian graphs with dynamics conjugated to quasi–

periodic translations. In dimension 2, the Aubry-Mather theorem gives an answer to the

question of what happens to these tori when they break down, eg. in large perturbations of

integrable maps. In higher dimension, Mather’s theory of minimal measure also provides an

answer to that question (see Chapter 9). In this section, we look for properties that invariant

tori may have whether they arise from KAM or not. We will see that certain attributes of

KAM tori (eg. graphs with recurrent dynamics) imply their other attributes (eg. Lagrangian),

as well as other properties not usually stated by the KAM theorems (minimality of orbits).

A. Recurrent Invariant Toric Graphs Are Lagrangian

Theorem 35.1 (Herman (1990)) Let T be an invariant torus for a symplectic twist

map f of T ∗Tn and suppose f
∣∣
T

is conjugated by a diffeomorphism h to a an

irrational translation R on Tn. Then T is Lagrangian.

Proof . Since the restriction of the symplectic 2-form ω
∣∣
T

is invariant under f
∣∣
T

and

since R = h−1 ◦ f
∣∣
T
◦ h, the 2-form h∗ω

∣∣
T

is invariant under R. Since R is recurrent,

h∗ω
∣∣
T

=
∑

i,j akjdxk ∧ dxj must have constant coefficients akj . Integrating h∗ω
∣∣
T

over

the xk, xj subtorus yields on one hand akj , on the other hand 0 by Stokes’ theorem since

h∗ω
∣∣
T

= dh∗λ
∣∣
T

is exact. Hence h∗ω
∣∣
T

= 0 = ω
∣∣
T

and the torus T is Lagrangian. ��
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B. Orbits on Lagrangian Invariant Tori Are Minimizers

The following theorem is attributed to Herman by MacKay & al. (1989), whose proof we

reproduce here.

Theorem 35.2 Let T be a Lagrangian torus, C1 graph over the zero section of T ∗Tn

which is invariant for a symplectic twist map f whose generating function S satisfies

the following superlinearity condition:

(35.1) lim
‖Q−q‖→∞

S(q,Q)
‖Q− q‖ → +∞

Then any orbit on T is minimizing.

Note that Condition (35.1) is implied by the convexity condition 〈∂12S(q,Q).v,v〉 ≤
−a ‖v‖2 as can easily be seen by the proof of Lemma 27.2.

Proof . Since T is Lagrangian, it is the graph of the differential of some function plus a

constant 1-form: T = dg(Tn) + β (see 57.4). Change coordinates so that T becomes the

zero section: (q,p′) = (q,p− dg(q)− β). If F0(q,p) = (Q,P ), then, in the coordinates

(q,p′), we haveQ′ = Q,P ′ = P − dg(Q)− β. Thus a possible generating function is:

R(q,Q) = S(q,Q) + g(q)− g(Q) + β(q −Q).

Indeed

−p′ =∂1R(q,Q) = ∂1S(q,Q) + dg(q) + β

P ′ =∂2R(q,Q) = ∂2S(q,Q)− dg(Q)− β

We now show that R is constant on T , where it attains its minimum. We first note that:

∂1R(q,Q) = 0⇔ p = dg(q) + β ⇔ Q = l(q)

∂2R(q,Q) = 0⇔ P = dg(Q)− β ⇔ Q = l(q)

where l(q) = π◦f(q, dg(q)+β) and π is the canonical projection. HenceR(q, l(q)) = R0

is constant , and DR(q,Q) is non zero if Q �= l(q). Since g is periodic, the superlinearity

of S implies that R is coercive, i.e. lim‖Q−q‖→∞R(q,Q) → ∞. Since R has all its

critical points on T , it must attain its minimum Rmin there. It is now easy to see that the
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q coordinates qn, . . . , qk of any orbit segment on T must minimize the action. Indeed, let

rn, . . . , rk be another sequence of points of Tn with qn = rn, qk = rk. Then:

W (r1, . . . , rk) =
k−1∑
j=n

R(rj , rj+1) + g(qk)− g(qn) + β(qk − qn)

≥ (k − n)Rmin + g(qk)− g(qn) + β(qk − qn) = W (q1, . . . , qk)

��

Remark 35.3 Arnaud (1989) (see also Herman (1990)) has interesting examples which

show that the condition that the graph be Lagrangian is essential in Theorem 35.2. Consider

the Hamiltonians on T ∗T2 is given by:

Hε(q1, q2, p1, p2) =
1
2
(p1 − ε cos(2πq2))2 +

1
2
p2
2.

The torus {(q1, q2, ε cos(2πq2), 0)} is made of fixed points for the corresponding Hamil-

tonian system, but it is not Lagrangian (exercise). A further perturbation Gε,δ(q,p) =

Hε(q,p) + δ sin(2πq2), 0 < δ ≤ ε of these Hamiltonians also provide counterexamples to

the strict generalization of the Aubry-Mather theorem to higher dimensions: such systems

have no minimizers of rotation vector 0. All the fixed points for the time 1 map have non

trivial elliptic part.

C. Birkhoff’s Graph Theorem

We now present a theorem of Birkhoff for two dimensional twist map which shows that

invariant circles must be graphs. The topological proof we give, due to Katznelson & Ornstein

(1997) is interesting in that it also offers a method of proof for the Aubry-Mather theorem,

which we present in the next subsection. In subsection E, we sketch the generalization to

higher dimensions of the graph theorem by Bialy and Polterovitch.

Theorem 35.4 (Birkhoff) Let f be a twist map of the cylinder A. Then:

(1) (Graph Theorem) Any invariant circle which is homotopic to the circle C0 =

{y = 0} is a (Lipschitz) graph over C0.
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(2) If two invariant circles C− and C+ homotopic to C0 bound a region without

other invariant circles, for any ε, there are (uncountably many) orbits going from

ε-close to C± to ε-close to C∓.

This theorem was proved as two independent theorems by Birkhoff (1920).

Proof (after Katznelson & Ornstein (1997)). For both (1) and (2), we can assume the

existence of an invariant circle, call it C+. Take any circle C which is a graph over C0 and

which lies under C+ . The image f(C) of this circle by f may not be a graph anymore, but

one can make a pseudographUf(C) by trimming it, a process that we denote byU . We now

describe pseudo graphs and the trimming map. Take all the points of f(C) that can be “seen”

vertically from above. This set forms the graph of a function which is continuous except for

at most countably many jump discontinuities. Because of the positive twist condition, these

jumps must always be downward as x increases: if C is given the rightward orientation, a

vector tangent to C must avoid the cone Θ+
v , by the ratchet phenomenon (see Lemma 12.1

in Chapter 2). Make a circle out of this graph by adjoining vertical segments at the jumps.

This is Uf(C). We call such a curve a right pseudograph: a curve made of the graph of

a function y = h(x) which is continuous except for downward jump discontinuities (the

limit to the right h(x+) and the left h(x−) exist at each point and h(x−) ≥ h(x+)), and by

adjoining to this graph vertical segments to close the jumps.

We can apply f to a pseudograph C and trim it as we did for a graph. Because of

the positive twist condition, the horizontal part of Uf(C) is made of images under f of

horizontal parts of C. Given a (right pseudo) graph C, we obtain a sequence of curves

Cn = (Uf)nC.

Lemma 35.5 C∞ = limn→+∞ supCn is an f-invariant graph, where lim sup is taken

in the sense of functions y = h(x) with the obvious allowance for vertical segments.

Proof . After one iteration of Uf on a (right pseudo) graph C, we get a pseudograph with

a downward modulus of continuity: the ratchet phenomenon and the vertical cuts implies

that, for any pair of points z and z′ in the lift of Uf(C), z′ − z is in a cone V of vectors
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(x, y) with y ≥ δx if x ≤ 0 and y ≤ δx if x > 0 (see Figure 35.1). This implies that C∞

also has this modulus of continuity, and hence is a pseudograph.

Z

Z’
●

●

Fig. 35.1. The cone defining the modulus of continuity at a point z of Uf(C).

There is a partial order on circles homotopic to C0 = {y = 0}: we say that C � C ′ if

C ′ is in the closure of the upper component of A\C, which we denote by A+(C). Clearly

f and U preserve this order, and C � U(C) for any circle C homotopic to {y = 0}. This

implies that fn(C) � Ufn(C) � C∞ for all n, and hence f(C∞) � Uf(C∞) � C∞. By

area preservation f(C∞) = Uf(C∞) = C∞.

If C∞ were not a graph, its vertical segments would be mapped by f insideA−(C∞) =

A−(Uf(C∞)), and A−(C∞) would contain A−(f(C∞)) as a proper subset. This contra-

dicts the fact that f has zero flux. Hence C∞ is an f -invariant graph. ��
We now finish the proof of Birkhoff’s theorems. Suppose that f admits an invariant circle

C∗ homotopic to the zero section C0. We show that it is a (Lipschitz) graph. The region

below C∗ is invariant. Let Cmax be the supremum of the invariant graphs in this region

(under the partial order≺). By continuity, Cmax is an invariant circle which is a graph. But

Proposition 12.3 implies that all invariant circles that are graphs are in fact Lipschitz graphs

(again, the ratchet phenomenon). If Cmax �= C∗, then there exist a (not invariant) graph C

with Cmax ≺ C ≺ C∗. Applying the trimming iteration process to C, we get an invariant

(Lipschitz) graph C∞ with Cmax ≺ C∞ ≺ C∗. This contradicts the maximality of Cmax.

Hence C∗ = Cmax is a Lipschitz graph.

If f does not admit any invariant circle homotopic to C∗ other than the boundaries,

the iteration process performed on any (right) pseudograph must converge to the upper

boundary: we have C ≺ Uf(C). Since C∞ ⊂ closure(∪fn(C∗)), on any graph ε close to
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the lower boundary, there is a point whose ω-limit set is in the upper boundary. We could

have defined a trimming L of curves homotopic to the boundaries by taking their lower

envelope (the points seen from below) instead ofU . ThenL(C) is a left pseudograph andL

preserves the order of circles and L(C) ≺ C for any curve C homotopic to the boundaries.

Using lim inf instead of lim sup in the argument above, we get an iteration process L ◦ f
which converges to an invariant graph, which must be the lower boundary this time. And on

any graph ε close to the upper boundary, there is a point whose ω-limit set is in the lower

boundary. ��

Remark 35.6 Performing both the Uf and Lf trimming processes on the same curve C

yields points that come arbitrarily close to both boundaries in forward time. This fact was

proven by Mather (1993) variationally and Hall (1989) topologically. See also LeCalvez

(1990). The results of Mather and Hall are actually sharper. Mather also finds orbits whose

α-limit set is in one boundary, theω- limit set in the same or the other boundary . Hall uses the

existence of such solutions asymptotic to the boundaries to replace the area preserving con-

dition. Both authors find orbits “shadowing” any prescribed sequence of Aubry-Mather sets

in a region of instability (technically, Hall shadows periodic orbits). It would be interesting

to find a new proof of these results based on the trimming technique used above.

D*. Aubry-Mather Theorem Via Trimming

The above proof of Birkhoff’s theorems appears as an aside in Katznelson & Ornstein

(1997). They also recover the Aubry-Mather theorem with their trimming method. For

this they define, abstractly, a different type of trimming operator, which they call proper

trimming. Under proper trimming, the area below a curve is preserved. The main difficulty is

to show the existence of such an operator. Once the existence is established, one takes limits

of iterations under the map and the trimming operator. The limit is a pseudograph whose

horizontal parts are forward invariant under f . The Aubry-Mather sets are the intersection

of all the forward images (by the map) of these horizontal parts. Finally, they show the

existence of Aubry-Mather sets of all rotation numbers by applying this trimming procedure

simultaneously to all the horizontal circles in the annulus. Fathi (1997) offers some analog

to this in higher dimension, where he considers a certain semiflow on graphs of differentials
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on cotangent bundles (which are necessarily Lagrangian). In the limit, he recovers the

generalized Aubry-Mather sets of Mather (which are described in Section 49).

E*. Generalizations of Birkhoff’s Graph Theorem to Higher Dimensions

This section surveys the work of Bialy, Polterovitch and, indirectly, Herman on invariant

Lagrangian tori. It will require from the reader knowledge of material dispersed throughout

the book, and more. Bialy & Polterovitch (1992a) prove the following generalization to

Birkhoff’s Graph Theorem. We explain the terminology in the sequel.

Theorem 35.7 Let F be the time one map of an optical Hamiltonian system of

T ∗Tn, and let L be a smooth invariant Lagrangian torus for F which satisfies the

following conditions:

1) L is homologous to the zero section of T ∗Tn.

2) F
∣∣
L

is either chain recurrent or preserves a measure which is positive on open

sets.

Then L is a smooth graph (i.e. a section) over the 0-section.

Optical (see Chapter 7) means that the Hamiltonian H is time periodic and convex in

the fiber: Hpp is positive definite. Homologous to the zero section means that, together, the

0-section and the invariant torus bound a chain of degree n + 1, presumably some smooth

manifold of dimensionn+1 in our case. As for Condition 2), it suffices here to say that either

chain recurrence or existence of an invariant Borel measures are satisfied when the invariant

torus is of the type exhibited by the KAM theorem, where the map F
∣∣
L

is conjugated to an

irrational translation. In their paper, the authors use a condition that implies 2), as we show

at the end of this section:

2’) the suspension of F
∣∣
L

admits no transversal codimension 1 cocycle homologous

to zero.

This theorem is a culmination of efforts by these authors, as well as by Herman (1990) who

gives a perturbative version of this result as well as some important Lipschitz estimates for

invariant Lagrangian tori. We now give a very rough idea of the proof of Theorem 35.7. First

reduce the theorem to the case of an autonomous Hamiltonian on TTn+1 by viewing time as

an extra S1 dimension, with the energy as its conjugate momentum (extended phase space).
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Assume by contradiction that the invariant torus L is not a graph. Consider the set S(L)

of critical points of the projection π
∣∣
L

. Generically, S(L) consists of an n − 1 dimension

submanifold of L whose boundary is of dimension no more than n− 3. Assume we are in

the generic case. Then S(L) can be cooriented by the flow: the Hamiltonian vector field is

transverse to it on the invariant torus. This makes S(L) a cocycle, i.e. a representative of a

cohomology class of the torus. It turns out that this cohomology class is dual to the Maslov

class of the torus L. [The Maslov class of L is the pull-back of the generator of H1(Λ(n))

by the Gauss map, where Λ(n) is the (Grassmanian) space of all Lagrangian planes in IR2n.

Prosaically, this means the following: the oriented intersection of S(L) with any closed

curve on L counts how many “turns” the Lagrangian tangent space of L makes

along the curve. We explain that a little. The number of turns can be made quite precise

because Λ(n) has one “hole” around which Lagrangian spaces can turn (H1(Λ(n)) = ZZ)].

S(L) is the set of points on L where the Lagrangian tangent space becomes vertical in some

direction. The tangent space, seen as a graph over the vertical fiber, is given by a bilinear

form which is degenerate at points of S(L) and, thanks to the optical condition, decreases

index (i.e. the dimension of the positive definite subspace increases) when following the

flow at those points. Bialy and Polterovitch refer to Viterbo (1989) who proves that tori

homologous to the zero section have Maslov class zero. Condition 2’) now concludes: since

it is homologous to zero, the cocycle S(L) must be empty, i.e. there is no singularity in

the projection π
∣∣
L

and the torus is a graph. The non generic case follows by making a limit

argument using uniform Lipschitz estimates for invariant tori proven by Herman (1990).

Finally, let us show how the fact that F
∣∣
L

is measure preserving implies Condition 2’).

Assume F is the time 1 map of an autonomous Hamiltonian system on T ∗Tn, L is an

invariant torus andΩ is the volume form onL preserved by the Hamiltonian vector fieldXH .

The Homotopy Formula (see 59.7) LXHΩ = diXHΩ + iXHdΩ implies that diXHΩ = 0.

Assume XH is transversal to S, a codimension 1 cocycle homologous to zero and let C be

an n-dimensional chain that S bounds. Transversality implies
∫
S
iXHΩ �= 0. On the other

hand, Stokes’ Theorem yields
∫
S
iXHΩ =

∫
C
diXHΩ = 0. This contradiction implies that

S = ∅. ��

Remark 35.8 As noted by Bialy and Polterovitch, it is not clear that Theorem 35.7 is optimal:

Condition 2) may be unnecessary, as is the case in dimension 2. One could imagine a new
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proof of this theorem using higher dimensional trimming on Lagrangian pseudographs,

which would not need this hypothesis...

36. (Un)Stable Manifolds and Heteroclinic orbits

A. (Un)Stable Manifolds

Consider two hyperbolic fixed point z∗ = (q∗,p∗),z∗∗ = (q∗∗,p∗∗) for a symplectic twist

map F of T ∗Tn. We remind the reader that the stable and unstable manifolds at any fixed

point z∗ are defined as:

Ws(z∗) = {z ∈ T ∗Tn | lim
n→+∞

Fn(z) = z∗},

Wu(z∗) = {z ∈ T ∗Tn | lim
n→+∞

F−n(z) = z∗}

Moreover the tangent space toWs at z∗ is given by the vector subspace Es(z∗) of eigen-

vectors of eigenvalue of modulus less than 1, with a similar fact for Wu and Eu. In our

case, the differential DF at the points z∗ and z∗∗ has as many eigenvalues of modulus less

than 1 as it has of modulus greater than 1. Hence the stable and unstable manifolds at these

points have both dimension n. The following appears in Tabacman (1993):

Proposition 36.1 The (un)stable manifolds of a hyperbolic fixed point for a symplectic

twist map are Lagrangian. Close to the hyperbolic fixed point, they are graphs of

the differentials of functions.

Proof . Consider a point z on the stable manifold of the hyperbolic fixed point z∗, and

two vectors v,w tangent to that manifold at z. Then:

ωz(v,w) = ωFk(z)(DF k(v), DF k(w))→ ω∗z(0, 0) = 0, as k →∞.

which, since it has dimension n in T ∗Tn, proves that the stable manifold is Lagrangian.

The same argument, using F−k, applies to show that the unstable manifold is Lagrangian.

We leave the proof of the second statement to the reader (Exercise 36.2). ��
In Exercise 36.3, the reader will show a generalization of this fact that makes it applicable

to exact symplectic maps (not necessarily twist) of general cotangent bundles. The exercise
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will show that the (un)stable manifolds are in fact exact Lagrangian, i.e. the restriction of

the canonical 1-form λ to the (un)stable manifolds is exact.

Exercise 36.2
b) Prove that the local (un)stable manifold of a hyperbolic fixed point z∗ for a symplectic
twist map F is a graph over the zero section (Hint. use the formula for the differential
of F given in 25.5, and the twist condition det (∂12S) �= 0 to show that the (un)stable
subspace of DFz∗ cannot have a vertical vector. To do this, expend ωz∗(DFw,w) assuming
w = (0, w) and show that necessarily w = 0.)

c) Deduce from this that the (un)stable manifolds are graphs of differentials of functions
Φu, Φs defined on a neighborhood of π(z∗) in the zero section.

Exercise 36.3 Let F is an exact symplectic map (not necessarily twist) of the cotangent
bundle T ∗M of some manifold: F ∗λ − λ = dS for some function S : M → IR (λ is the
canonical 1 form on T ∗M). In Appendix 1, it is shown that any Hamiltonian map is exact
symplectic, and any composition of exact symplectic map is exact symplectic.

a) Show that the (un)stable manifolds Ws,u of a fixed point z∗ are exact Lagrangian
(immersed) submanifolds, i.e. λ

∣∣
Ws,u

= dLs,u for some functions Ls,u :Ws,u → IR. (Hint.

Show that the integral of λ over any loop on Ws,u is 0).

b) Show that if and W is an exact Lagrangian manifold invariant under the exact sym-
plectic map F , then:

S(z) + constant = L(F (z))− L(z), ∀p ∈ W

c) Conclude that

Lu(zu) =
∑
k<0

[
S(F k(zu))− S(z∗)

]
, Ls(zs) = −

∑
k≥0

[
S(F k(zs))− S(z∗)

]
.

For more on this approach, see Delshams & Ramı́rez-Ros (1997).

B. Variational Approach to Heteroclinic Orbits

As a consequence of Proposition 36.1, we obtain a variational approach to heteroclinic

orbits. Let z∗ = (q∗,p∗) be a hyperbolic fixed point. Let Φu, Φs defined on a neighborhood

U∗ of q∗ be the functions whose differentials have for graphs the (un)stable manifolds of

z∗. We can add appropriate constants to these functions and get Φs(q∗) = Φu(q∗) = 0.

In the proof of Theorem 35.2, we showed that the function R(q,Q) = S(q,Q) + g(q)−
g(Q)+β(q−Q) was constant on the Lagrangian manifold Graph(dg+β). Applying this

to g = Φs or Φu, β = 0, we obtain

S(q,Q) = Φs(Q)− Φs(q) + constant,
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where F (q, Φs(q)) = (Q, Φs(Q)) (this makes sense in a subset of U∗). Applying the

equation to (q∗, q∗) shows that the constant is S(q∗, q∗). Hence

S(q,Q)− S(q∗, q∗) = Φs(Q)− Φs(q)

for a point (q,Q) on the local stable manifold of z∗. We now sum over the orbit (qk, qk+1)

of the point (q,Q) = (q0, q1) to get:

N−1∑
k=0

[S(qk, qk+1)− S(q∗, q∗)] =
N−1∑
k=0

[Φs(qk+1)− Φs(qk)] = Φs(qN )− Φs(q0)

As N →∞, Φs(qN )→ Φ(q∗) = 0 and thus the sum converges to −Φ(q0):

(36.1)
∞∑
k=0

[S(qk, qk+1)− S(q∗, q∗)] = −Φs(q0).

Applying the same manipulations to the unstable manifold, using the fact that the generating

function for F−1 is −S(Q, q), this leads to:

Proposition 36.4 Let z∗ = (q∗,p∗),z∗∗ = (q∗∗,p∗∗) be two hyperbolic fixed points

for the symplectic twist map F . Let U∗ and U∗∗ be neighborhoods of q∗ and q∗∗

on which the differentials of the functions Φu and Φs respectively give the unstable

manifold of z∗ and the stable manifold of z∗∗. Then critical points of the function

W (q0, . . . , qN ) = Φu(q0) +
N−1∑
k=0

S(qk, qk+1)− Φs(qN ), q0 ∈ U∗, qN ∈ U∗∗

are segments of heteroclinic orbits.

Proof . Left to the reader. ��
With this set-up, Tabacman (1995) shows that, in the 2 dimensional case, any two local

minima (i.e. fixed points) ξ and η of φ(x) = S(x, x) such that φ(ξ) = φ(η) < φ(x) for all

x ∈ (ξ, η), are joined by some trajectory.

Here is a sketch of a numerical algorithm also proposed (and used) by E. Tabacman to

find heteroclinic orbits between two given hyperbolic fixed points z∗,z∗∗:

(1) Find a basis for the unstable plane Eu of DF at z∗, and display the basis vectors as

columns of a 2n× n matrix

(
A
B

)
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(2) The matrix M = BA−1 is symmetric and Eu is the graph of the differential of the

quadratic form q �→ qtMq. This function is an approximation to Φu (see 55.6.)

(3) Perform similar steps to approximate Φs at z∗∗.

(4) Pick N (large enough) and use your favorite numerical method to search for critical

points of the function W defined above, with points q0, qN suitably close to z∗ and z∗∗

respectively.

(5) For more precision, make q0 and qN closer to z∗ and z∗∗ (resp.) and increase N .

Note that this algorithm can be substantially improved by starting, using normal forms, with

an approximation of higher degree than linear for the local (un)stable manifolds (see Simó

(1990)).

C. Splitting of Separatrices and Poincaré–Melnikov Function

In Hamiltonian systems, the Poincaré–Melnikov function (actually an integral), measures

how much the intersecting stable and unstable manifolds of two hyperbolic fixed points split.

This kind of function has a long and rich history: Poincaré (1899) introduced it as a way to

prove non-integrability in Hamiltonian systems. It has then been used to prove the existence

of chaos (transverse intersections of stable and unstable manifolds often lead to “horseshoe”

subsystems), and to estimate the rate of diffusion of orbits in the momentum direction. The

discrete, two dimensional case was considered by Easton (1984), Gambaudo (1985), Glasser

& al. (1989), Delshams & Ramı́rez-Ros (1996). Here, following Lomeli (1997), we give a

formula for a Poincaré–Melnikov function for a higher dimensions symplectic twist map

in terms of its generating function. A more general treatment, valid in general cotangent

bundles, and which does not assume that the separatrix is a graph over the zero section, is

given in Delshams & Ramı́rez-Ros (1997).

Theorem 36.5 Let F0 be a symplectic twist map of T ∗Tn with hyperbolic fixed points

z∗ = (q∗,p∗),z∗∗ = (q∗∗,p∗∗) such that a subset of Wu(z∗) = Ws(z∗∗) = W
containing z∗,z∗∗ is the graph p = ψ(q) of a function ψ over some open set.

Let S0 be the generating function of F0. Consider a perturbation Fε of F0 with

generating function Sε = S0 + εS1 such that S1(q∗, q∗, 0) = S1(q∗∗, q∗∗, 0) = 0 and
d
dq

∣∣
q=q∗

S1(q, q, ε) = 0 = d
dq

∣∣
q=q∗∗

S1(q, q, ε). Then the function L :W → IR:
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(36.2) L(q) =
∑
k∈ZZ

S1(qk, qk+1, 0) where qk = π ◦ F k(q, ψ(q))

is well defined and differentiable. If L is not constant then, for ε small enough, the

(un)stable manifolds of the perturbed fixed points of Fε split. Their intersection is

transverse at nondegenerate critical points of L.

Note that, whereas the condition S1(q∗, q∗, 0) = S1(q∗∗, q∗∗, 0) is essential, the fact

that their value is 0 is just normalization. Also, the condition on the nullity of derivatives

can be discarded (see Delshams & Ramı́rez-Ros (1997)).

Proof . Work in the covering space IR2n of T ∗Tn. Let Φ : U ⊂ IRn → IR and ψ = dΦ

be such that Graph(ψ) = W . As in the proof of Theorem 35.2, change coordinates so

thatW lies in the zero section: (q,p′) = (q,p−ψ(q)). If F0(q,p) = (Q,P ), then, in the

coordinates (q,p′), we have q = q, p′ = p− ψ(q),Q′ = Q,P ′ = P − ψ(Q). Thus the

generating function becomes:

Snew(q,Q) = Sold(q,Q) + Φ(q)− Φ(Q).

Note that the first order term S1 remains the same under this change of coordinates, since we

only added terms which are independent of ε. For ε small enough, the (un)stable manifolds

Wu
ε ,Ws

ε of the perturbed fixed points z∗ε,z
∗∗
ε (respectively) are graphs of the differentials

ψu,s
ε = dΦu,s

ε for some functions Φu,s
ε of the base variable q. Clearly, the manifoldsWu,s

ε

split for ε small enough whenever the following Poincaré–Melnikov function:

M(q) =
∂

∂ε

∣∣∣∣
ε=0

(ψu
ε (q)− ψs

ε(q))

is not constantly zero, and their intersection is transverse if the differentialDM is invertible

at the zeros. We will now show that:

M(q) =
∂L

∂q

where L(q) is the function defined in (36.2) , expressed in our new coordinates. Formula

(36.1) gives us expressions for Φu,s
ε :
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Φu
ε (q) =

∑
k<0

[
Sε(quk(ε), quk+1(ε))− Sε(q∗∗, q∗∗)

]
,

Φs
ε(q) = −

∑
k≥0

[
Sε(qsk(ε), q

s
k+1(ε))− Sε(q∗, q∗)

]

where quk(ε) (resp qsk(ε)) is the q coordinate of F k
ε (q, ψu

ε (q)) (resp. of F k
ε (q, ψs

ε(q))). We

change the order of differentiation:

M(q) =
∂

∂ε

∣∣∣∣
ε=0

∂

∂q
(Φu

ε (q)− Φs
ε(q)) =

∂

∂q

∂

∂ε

∣∣∣∣
ε=0

(Φu
ε (q)− Φs

ε(q)),

and compute one of these terms, using Formula (36.1) and abbreviating quk = quk(0):

∂

∂ε

∣∣∣∣
ε=0

Φu
ε (q)

=
∂

∂ε

∣∣∣∣
ε=0

∑
k<0

[
Sε(quk(ε), quk+1(ε))− Sε(q∗∗, q∗∗)

]

=
∑
k<0

[
∂1S0(quk , q

u
k+1)

∂

∂ε
quk(0) + ∂2S0(quk , q

u
k+1)

∂

∂ε
quk+1(0) + S1(quk , q

u
k+1)

]

=
∑
k<0

S1(qk, qk+1),

where in the last line we took advantage of ∂1S0(qk, qk+1) = ∂2S0(qk, qk+1) = 0: these

are the p coordinates of an orbit on the zero section in our new coordinates. In the line

before the last, the terms involving Sε(q∗∗, q∗∗) disappeared because of our assumption on

S1. The same computation shows that ∂
∂ε

∣∣
ε=0

Φs
ε(q) = −

∑
k≥0 S1(qk, qk+1). The proof

that ∂L
∂q = M(q) follows. ��

Remark 36.6 We have only touched the surface of a vast subject here. Once a Melnikov

function is found, one has to be able to show that it is non zero on specific examples.

This is usually hard, even in dimension 2. Explicit computations often utilizes the fact

that, in good situations, the complexified Melnikov function (think of q as complex in the

above) is an elliptic function. As a result of such computations, one often finds (eg. for

standard like maps) that the angle of splitting of the separatrices are exponentially small in

the perturbation parameter ε, making numerical methods inapplicable. We let the reader

consult Delshams & Ramı́rez-Ros (1996b), Delshams & Ramı́rez-Ros (1998), Glasser &
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al. (1989), Gelfriech & al. (1994). In Gelfreich (1999), a precise formula for the estimate

for the exponential splitting of separatrices in the standard map is proven, a culmination of

years of work initiated by Lazutkin.

37.* Instability, Transport and Diffusion
A*. Some Questions About Stability

If one thinks of twist maps as local models for symplectic maps around elliptic fixed points,

the problem of stability of these fixed points is directly related to the obstruction orbits of

twist maps may encounter to drifting in the vertical (momentum) direction. In dimension 2,

invariant circles obviously offer such obstructions. Three natural questions arise:

Question 1 Are the invariant circles the only obstruction for orbits of twist maps

to drift vertically? What if there are no invariant circles at all, can orbits drift to

infinity on the cylinder?

Question 2 Do the invariant tori of higher dimensional (eg. KAM) tori offer any

obstruction to the drift of orbits in the momentum direction, at least close to inte-

grable?

Question 3 How can we detect when a system does not have invariant tori?

B*. Answer to Question 1: Shadowing of Aubry-Mather Sets

Are the invariant circles the only obstruction for orbits of twist maps to drift ver-

tically? What if there are no invariant circles at all, can orbits drift to infinity on

the cylinder?

The answer is: Yes and Yes. The answer to the first part of the question is already given

by Part (2) of Birkhoff’s Theorem 35.4 , which says that, in a region bounded by two

invariant circles, which contains no other invariant circle, there exist orbits going from one

circle to the other (in whichever order). This fact gave rise to the the name (Birkhoff) region

of instability for such regions.
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The answer to the second part of the question (again Yes) follows from Mather (1993)

and Hall (1989), who show that given any (infinite) sequence of Aubry-Mather sets, one can

find an orbit that shadows it, i.e. stays at a prescribed distance from each Aubry-Mather set

for a prescribed amount of time (the transition time is not controlled). In particular, for twist

maps of the cylinder without any invariant circles, there exist orbits that are unbounded on

the cylinder (take a sequence of Aubry-Mather sets going to infinity: such a sequence must

exist if the twist is bounded from below). Note that Slijepc̆ević (1999a) has recently given

a proof of these results using the gradient flow of the action methods of Chapter 3.

Another approach to instability uses partial barriers: invariant sets made of stable and

unstable manifolds of hyperbolic periodic orbits or Cantori. The theory of transport seeks

to study the rate at which points cross these barriers. This theory was initiated by MacKay,

Meiss & Percival (1984). The survey Meiss (1992) is beautifully written and encompasses

the theory of twist maps of the annulus and transport theory. For other developments, see

Rom-Kedar & Wiggins (1990) and Wiggins (1990). MacKay suggested that (the projection

in the annulus of) ghost circles could be used as partial barriers.

C*. Partial Answer to Question 2: Unbounded Orbits

Do the invariant tori of higher dimensional (eg. KAM) tori offer any obstruction

to the drift of orbits in the momentum direction, at least close to integrable?

The answer is: an ambiguous “No”. Topologically, it is clear that, forn > 1, anndimensional

torus in T ∗Tn does not separate the space into two disjoint components. However, this does

not offer a guarantee that orbits will drift in the momentum direction, especially in the

presence of a set of high measure of invariant tori. But right after proving his version of

the KAM theorem, Arnold (1964) gave a stunning example of a possible limitation to the

stability offered by KAM tori. This was an example of a family of Hamiltonian systems,

in which, even close to integrable where the KAM theorem implied the existence of many

invariant tori, some orbits drifted in the momentum direction. One of the fundamental

questions remained: could the mechanism of diffusion detected in the highly nongeneric

example of Arnold be found in generic systems? This paper has since generated an immense

amount of work from mathematicians and physicists. In particular, much of the recent study

of splitting of separatrices can be traced down to this paper, where chains of stable and

unstable manifolds of invariant tori of lower dimensions (“whiskered tori”) are used to
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construct drifting orbits. Also, as already mentioned, Nekhoroshev’s theory measures the

“exponential stickiness” of KAM tori, which implies that orbits must spend a very long time

around these tori if they are caught in their neighborhood.

To my knowledge, the first decisive result in the direction of generic diffusion was given

by Mather, who announced a striking result for Hamiltonian systems on T ∗T2: For a Cr

(r ≥ 2) generic Riemannian metric g on T2 andCr generic potential V periodic in time, the

classical Hamiltonian system H(q,p, t) = 1
2 ‖p‖

2
g + V (q, t) possesses unbounded orbits.

Mather’s proof departs from the traditional methods used in this problem. It powerfully

brings together the constrained variational methods developed in Mather (1993) , the the-

ory of minimal measures of Mather (1991b) (see also Chapter 9) as well as hyperbolic

techniques. Delshams, de la Llave & Seara (2000) have given recently an alternate proof

to this result, using hyperbolic techniques and methods of geometric perturbation. See also

the related results of Bolotin & Treschev (1999), which use some mixture of variational

and hyperbolic methods. Finally, de la Llave announced (Fall 1999) a generalization of this

theorem to cotangents bundles of arbitrary compact manifolds. His method uses a general-

izations of Fenichel’s theory of perturbation of normally hyperbolic sets. Interestingly, the

orbits found start at high energy levels, where the system is close to integrable. See also

Xia (1998) , for some recent developments closer to the spirit of the original problem of

diffusion and Bessi (1996), (1997) and (1998), a series of article where the full force of

Mather’s variational techniques are used to study diffusion, including the classical case of

Arnold (1964) . As of this writing, these problems are the subject of some of the most active

research in Hamiltonian dynamics.

D*. Partial Answer to Question 3: Converse KAM Theory

How can we detect when a system does not have invariant tori?

Since invariant tori have been associated to long term stability, many people have studied

the mechanisms that leads to the breaking of such tori. There is an extensive body of work

in dimension 2. A popular tool is Green’s criterium, which associates the breaking of an

invariant torus of a certain rotation number with the instability (hyperbolicity) of periodic

orbits of nearby rotation numbers. Thanks to this criterium, MacKay & Percival (1985)

showed that the standard map fk (see Section 6) does not have any invariant circle for

k > 63/64). Boyland & Hall (1987) shows that if there is a non cyclically ordered periodic
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orbit of rotation number ω, then there are no invariant circles of rotation number in an

interval given by the Farey neighbors of ω. Mather (1986) relates the non existence of

invariant circles to the variation of the action function on Aubry-Mather sets (see also Golé

(1992 a) for a related result which uses the total variation of the action on ghost circles).

MacKay (1993), studies the question in great length and gives a renormalization method

that explains the universality of scaling of the gaps of Aubry-Mather sets near the breaking

point of an invariant circle. Finally, MacKay & al. (1989) starts the study of converse KAM

theory in symplectic twist maps. Haro (1999) provides some more, interesting results.


