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PERIODIC ORBITS FOR SYMPLECTIC
TWIST MAPS OF T*Tn

27. Presentation of the Results

In this Chapter, we give some results on the existence of multiple periodic orbits of different

rotation vectors for symplectic twist map of T ∗Tn. The introduction in Appendix 2 of new

topological tools yields an improvement on the results of Golé (1989) and (1991), as well

as simplifications and unification in the proofs. For the sake of fluidity, some of the settings

and arguments are repeated from the two dimensional case.

A. Periodic Orbits and Rotation Vectors

Similarly to the case n = 1, a point (q,p) ∈ IR2n is called a m, d–periodic point for the

lift F of a map f of T ∗Tn if

F d(q,p) = (q +m,p)

where m ∈ ZZn and d ∈ ZZ+. The rational vector
m

d
is called the rotation vector of the

orbit of (q,p). We will say that m and d are relatively prime when d is relatively prime

with at least one of the components of the vectorm. In general, when it exists, the rotation

vector of a sequence q = {qk}k∈ZZ ∈ (IRn)ZZ is given by the limit:

ρ(q) = lim
k→±∞

qk
k
.
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B. Theorems of Existence of Periodic Orbits

The maps that we consider here satisfy either one of the following assumptions of coercion

or asymptotic linearity. In both cases, we assume that our map is a composition of symplectic

twist maps : F = FN ◦ . . . ◦ F1, where each Fk is the lift of a symplectic twist map of

T ∗Tn, with generating function Sk satisfying either:

Coercion

(27.1) lim
‖Q−q‖→∞

Sk(q,Q)→ +∞

or:

Asymptotic Linearity

Sk(q,Q) =
1
2
〈Ak(Q− q), (Q− q)〉+Rk(q,Q)

with:

Ak = Atk, det Ak 
= 0(27.2) (a)

det
N∑
1

A−1
k 
= 0(27.2) (b)

lim
‖Q−q‖→∞

∇Rk(q,Q)
‖Q− q‖ = 0.(27.2) (c)

Equivalently:

Fk(q,p) = (q +A−1
k p+Θ(q,p), p+ Υ (q,p))

with (27.2) (a) and (b) holding for Ak and:

(27.2) (c′) lim
‖p‖→∞

Θ(q,p)
‖p‖ = lim

‖p‖→∞

Υ (q,p)
‖p‖ = 0

Theorem 27.1 Let F = FN ◦ . . . ◦ F1 be a finite composition of symplectic twist

maps Fk of T ∗Tn satisfying either the convexity condition (27.1) or the asymptotic

condition (27.2). Then, for each relatively prime (m, d) ∈ ZZn × ZZ+, F has at least

n + 1 periodic orbits of type m, d. It has at least 2n of them when they are all

non–degenerate.
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A periodic orbit is called nondegenerate when the composition of the differential of the

map along the orbit has no eigenvalue equal to 1, see Section 29.

Outline Of The Proof. In the coercive case, we start by finding a minimum for the discrete

action functionW , sum of generating functions. This minimum is given by the coercion of

S and its periodicity. The multiplicity is given by Morse-Conley theory on an adequately

chosen sublevel set {W ≤ C}.
The case with the asymptotically linear condition is a relatively easy consequence of

Proposition 64.6 of Appendix 2 (first published here), which is really the technical heart

of the proof. We only have to prove that the action functionW on the appropriate quotient

space of sequences is indeed quadratic at infinity in the sense required by that proposition.

C. Comments on the Asymptotic Conditions

Coercion vs. Convexity. As in the case of dimension 2, the convexity of the generating

functions implies the coercion condition (27.1) . Namely:

Lemma 27.2 Let S be the generating function of a symplectic twist map satisfying

the following convexity condition:

(27.3) 〈∂12S(q,Q)v,v〉 ≤ −a ‖v‖2 , ∀q,Q,v ∈ IRn, k ∈ {1, . . . , N}.

Then S is coercive. More precisely, there are a real number α and positive real

numbers β and γ such that:

(27.4) S(q,Q) ≥ α− β ‖q −Q‖+ γ ‖q −Q‖2 .

The proof is identical to that of Proposition 40 of Chapter 2. The convexity con-

dition (27.3) can be seen directly on the map. Indeed, in Proposition 25.5, we derived
∂Q
∂p (q,p) = − (∂12S(q,Q))−1

, by implicit differentiation of p = −∂1S(q,Q). The con-

vexity condition (27.3) thus translates to:

(27.5) F (q,p) = (Q,P ) and

〈(
∂Q

∂p

)−1

v,v

〉
≥ a ‖v‖2 , ∀v ∈ IRn.
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uniformly in (q,p). Note that Condition (27.5) means thatF has bounded, positive definite

twist. MacKay & al. (1989) imposed this condition in their definition of symplectic twist

maps, a terminology that we have taken from them. Remember that Proposition 25.3 in

Chapter 4 shows that the bounded twist condition (27.5)implies the global twist condition.

About Asymptotic Linearity. The most important feature of Condition (27.2) is that each

Ak is not necessarily positive definite, but only a nondegenerate symmetric matrix. In

particular, no coercion on S is assumed here and the functionW will in general not have

a minimum. This is what Herman (1990) called the indefinite case.

Note that if we set Rk = 0 in Sk, we obtain a quadratic generating function for a linear

symplectic twist map Lk(q,p) = (q + A−1
k p,p). Thus, if L = LN ◦ . . . ◦ L1, condition

(27.2) implies that

(27.6) L(q,p) = (q +Ap,p) with A =
dN∑
k=1

A−1
k

and L is a symplectic twist map. Hence Condition (27.2) can be expressed as saying that F

is asymptotically linear (and asymptotically completely integrable), in that it is close to L

at∞: (27.2) (c’) shows that

lim
‖p‖→∞

‖F (q,p)− L(q,p)‖
‖p‖ = 0.

We leave it to the reader to show that the generating function and map conditions in (27.2)

are indeed equivalent.

Example 27.3 The generalized standard map satisfies both conditions (27.4) and (27.2) .

D. History

The results of Theorem 27.1 have a rich history, which can be traced back to the Poincaré-

Birkhoff fixed point theorem. Birkhoff & Lewis (1933) gave a proof of existence of infinitely

many periodic orbits around an elliptic fixed point of a symplectic map - which can basically

be reduced to a symplectic twist map, as we saw in Section 91. An elegant proof of the

Birkhoff-Lewis Theorem given by Moser (1977) follows the lines of the sketch of the

Poincaré-Birkhoff Theorem given in the introduction: since close to the elliptic periodic
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orbit the map is, in polar coordinates, close to integrable, the set Γ of points that only move

radially under the map F d(·)− (m, 0) is a graph over the angular coordinates, for suitable

choices of m, d. The intersection of Γ with its image F d(Γ )− (m, 0) is a set of periodic

orbits. This intersection is not empty, and can be obtained by finding critical points of an

appropriate function related to the generating function of the exact symplectic map. This

can be repeated over infinitely manym, d, where d→∞.

One of the main purposes of this book is to introduce the reader to the relatively simple

variational methods that are adapted to systems (discrete or continuous, see Chapter 8) not

necessarily close to integrable. Some methods were introduced for Hamiltonian systems

in the seminal article of Conley & Zehnder (1983), in which they prove the existence

of n + 1 homotopically trivial (i.e. m = 0) periodic orbits for Hamiltonian systems on

Tn× IRn which are linear outside of a compact set. Theorem 27.1 generalizes Conley and

Zehnder’s global version of the Birkhoff–Lewis Theorem (see Theorems 42.3 and 42.2 for its

Hamiltonian corollaries) in two ways: in its linearly asymptotic condition and in the variety

of the rotation vectors. Theorem 27.1 appeared in several pieces: Kook & Meiss (1989)

gave the proof of existence in the convex case. Their proof of multiplicity was corrected

in Golé (1994), inspired by the work of Bernstein & Katok (1987), who also consider the

close-to-integrable case. The asymptotically linear case is one of the main results of the

author’s thesis (see also Golé (1991)). Note that Josellis (1994) proves, at a considerable

technical cost of analysis and topology, a slightly stronger theorem for Hamiltonian systems

(he requires less smoothness on the system).

28. Finite Dimensional Variational Setting

Let F = FN ◦ . . . ◦ F1 where each Fk is the lift of a symplectic twist map of T ∗Tn with

generating function Sk. The critical action principle in Chapter 4 tells us that finding orbits

of F can be done by finding solutions of:

(28.1) ∂1Sk(qk, qk+1) + ∂2Sk−1(qk−1, qk) = 0, k ∈ ZZ.

The appropriate space of sequences in which to look for solutions of (28.1) corresponding

tom, d–points of F is:

X def= {q ∈ (IRn)ZZ | qk+dN = qk +m}
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which is isomorphic to (IRn)dN : the terms (q1, . . . , qdN ) determine a whole sequence in

X, and we will use them as a coordinate system for this space. Finding a sequence satisfying

(28.1) in X, is equivalent to finding q = (q1, . . . , qdN ) which is a critical point for the

periodic action function:

W (q) =
dN−1∑
k=1

Sk(qk, qk+1) + SdN (qdN , q1 +m).

In fact, the proof of the critical action principle (see Proposition 23.2 and also Corollary

5.5) reduces in this case to the suggestive formula:

(28.2) dW (q) =
dN∑
k=1

(P k−1 − pk)dqk.

Similarly to the 2 dimensional case in Chapter 3, we will search for critical points ofW by

studying the gradient flow solution of

dq(t)
dt

= −∇W (q(t))

where t is an artificial time variable. Written in components, this equation is a system of

dN differential equations:

q̇k = −∂1Sk(qk, qk+1)− ∂2Sk−1(qk−1, qk)

which, forC2 functions Sk’s, defines a local flowϕt on X. This flow is defined for all t ∈ IR

whenever the second derivatives of theSk’s are bounded (as is the case in the Standard Map):

the vector field −∇W is then globally Lipschitz (see Lang (1983) ). But the existence of a

local flow, garanteed by the existence of the second derivatives is enough for our purpose.

We need to complicate matters some more, to take advantage of the topology induced

by the periodicity of the generating functions. Formally, this can be done by remarking that

W is invariant under the diagonal ZZn action:W ◦ τn =W, n ∈ ZZn where

τn(q1, . . . , qdN ) = (q1 + n, . . . , qdN + n).

HenceW induces a function on the quotient X def= X/ZZn. But we go one step further. We

are not satisfied with finding distinct m, d–points, but we want to make sure that different

critical points of our function W correspond to different m, d–orbits of F . To this effect,

we note thatW is also invariant under the N th iterate σN of the shift map:
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(σq)k = qk+1.

This is because Sk+N = Sk, and thus σN permutes circularly the terms of W . Hence we

can defineW successively on the quotients:

X = X/τ = X /ZZn and

X def= X/σN

of X by the actions of τn, n ∈ ZZn and σN . Since the action of σN on critical sequences

corresponds to the action of F on points of T ∗Tn, distinct critical points of W on X

correspond to distinct orbits of F . The following lemma, due to Bernstein & Katok (1987),

describes the topology of the different spaces:

Lemma 28.1 The quotient maps: X→ X and X→ X are covering maps , and thus

so is X → X. The space X is homeomorphic to Tn × (IRn)dN−1, whereas X is a

(not always trivial) fiber bundle with base Tn and fiber (IRn)dN−1.

Proof . We make the change of variables:

q =
1
dN

dN∑
1

qk

vk = qk+1 − qk −m/dN, k ∈ {1, . . . , dN − 1}
and think of q as the base coordinate and v as the fiber. In these coordinates:

τn(q,v) = (q + n,v)

σ(q,v1, . . . ,vdN−1) =


q +

m

dN
,v2, . . . ,vdN−1,−

dN−1∑
j=1

vj




σdN (q,v) = (q +m,v)

(the reader should verify this...) From the first equality, we get:

X = X/ZZn � Tn × (IRn)dN−1.

The map σN induces a d–periodic, fixed point free diffeomorphism on X, and thus taking

the quotient of X by σN gives again a covering map. Finally, these coordinates show that

X = X/σN is a fiber bundle over (IRn/ZZn)/md ZZ � Tn. ��
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29. Second Variation and Nondegenerate Periodic Orbits

In this section, we show a relationship between the second derivative ofW and the spectrum

of the differential of the map along a periodic orbit which will help us detect nondegenerate

orbits variationally. We will delve more on this relationship in Section 33.

Second Variation vs. Dynamical Type. Suppose F = FN ◦ . . . ◦ F1 where each Fk is a

symplectic twist map and letW be defined as before.

Proposition 29.1 The eigenvalues of the differential DF dz at a m, d periodic point

z are in 1 to 1 correspondence with the the values λ ∈ IR such that the following

matrix M(λ) is degenerate:

M(λ) =




SdN22 + S1
11 S1

12 0 . . . 0 1
λS

dN
21

S1
21 S1

22 + S2
11 S2

12

. . . 0

0 S2
12

...
...

. . . 0
0 . . . 0 SdN−1

12

λSdN12 0 . . . 0 SdN−1
21 SdN−1

22 + SdN11




where each entries represents an n× n matrix, which we have abbreviated:

Skij = ∂ijSk(qk, qk+1).

Proof . Suppose that (q1,p1) = z is anm, d point for F . We want to solve the equation:

(29.1) DF dz (v) = λv

with v ∈ T (T ∗Tn)z . We follow MacKay & Meiss (1983): If q corresponds to the orbit of

z under the the successive Fk’s, it must satisfy:

∂W (q)
∂qk

= ∂2Sk−1(qk−1, qk) + ∂1Sk(qk, qk+1) = 0.

Therefore, a “tangent orbit” δq must satisfy:
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(29.2) Sk−1
21 δqk−1 + (Sk11 + Sk−1

22 )δqk + Sk12δqk+1 = 0

When q corresponds to a periodic point (q1,p1), Equation (29.1) translates, in terms of

the δq, to:

(29.3) δqdN+1 = λδq1

Clearly, equations (29.2) , (29.3) can be put in matrix form asM(λ)δq = 0 whereM(λ)

is the matrix advertised in the proposition, which finishes the proof. ��

Remark 29.2 This rather physical argument can be given a more mathematical footing.

Consider the following:

T ∗IRn ∼=
{
((q1,p1), . . . , (qdN ,pdN ) ∈ (T ∗IRn)dN | Fk(qk,pk) = (qk+1,pk+1)

}
∼= {q ∈ (IRn)dN+1 | ∇W (q)k = 0, k = 1, . . . , dN − 1}

The first homeomorphism is between points in the space and their orbit segments of a given

length, the second is given by the correspondence between orbit segments and critical points

of the action. If one expresses a parameterization of an element of T (T ∗IRn) with the first

representation, one gets the orbit of a tangent vector under the differentials of the Fk’s. If

one uses the second identification , one gets (29.2) .

Nondegenerate Periodic Orbits. As an immediate consequence of Proposition 29.1, we

have the second variation criterium for degenerate periodic orbits:

Definition 29.3 A periodic point z of period d for a symplectic twist map F is called

nondegenerate ifDF dz has no eigenvalue 1. A periodic orbit is called nondegenerate if one,

and therefore all of its points are nondegenerate.

Lemma 29.4 An m, d periodic point is nondegenerate for F if and only if the critical

point of W to which it corresponds is nondegenerate.

Lemma 29.2 proves in particular that the condition “allm, d orbits are nondegenerate”

is equivalent to “W is a Morse function” (i.e. a function all of whose critical points are
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nondegenerate, see Appendix 2). The following proposition shows that both properties are

true for generic symplectic twist maps.

Proposition 29.5 For generic symplectic twist maps , all periodic orbits are nonde-

generate and hence all the periodic action functions W are simultaneously Morse.

Proof . We remind the reader that a property is generic on a topological space if it satisfied

on a residual set of that space, i.e. a countable intersection of open and dense sets. Robinson

(1970), in his theorem 1Bi, proves that the set of Ck symplectic maps with nondegenerate

periodic points is residual in the space of allCk symplectic maps. He proceeds by induction

on the period d of the points(11). We want to adapt his proof to the space of C1 symplectic

twist maps . First note that, since the twist condition is open, this space is an open set in

the space of C1 exact symplectic maps. The only thing that we have to check, therefore, is

that the perturbations that Robinson uses to remove degeneracy transform exact symplectic

maps into exact symplectic maps. But this is not hard to check: each of these perturbations

is given by composing the original map f with the time one map of the hamiltonian flow

associated to a bump function in a small neighborhood of a given periodic point. Hence the

perturbed map is the composition of the original exact symplectic map with the time 1 map

of a Hamiltonian, also exact symplectic by Theorem 59.7. The composition of two exact

symplectic maps being exact symplectic, we are done. ��

30. The Coercive Case

The standing assumption in this section is that F = FN ◦ . . . ◦F1 where Fk is a symplectic

twist map with generating function Sk satisfying the coercion condition:

Corollary 30.1 Let F satisfy the coercion condition (27.1) . Then, for each relatively

prime, m, d, there is a minimum for the corresponding periodic action function W

and hence an m, d–point for F .

11C.Robinson actually deals with higher order resonances as well, i.e, roots of unity in the
spectrum of Dfdz .
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Proof . Identical to that of Proposition 11.1. ��
We have thus found at least one m, d–orbit corresponding to a minimum of W . The

reader should be aware that, unlike the 1 degree of freedom case, this does not imply that

the orbit is a global minimizer (see Herman (1990) and Arnaud (1989)). We now turn to

the multiplicity of orbits. Remember that X is a bundle over Tn . Let Σ ∼= Tn be its zero

section. LetK > supq∈ΣW (q) . Trivially, we have:

Σ ⊂WK def= {q ∈ X |W ≤ K}

Note that sinceW is proper, for almost everyK,WK is a compact manifold with boundary,

by Sard’s Theorem. From this we get the commutative diagram in homology:

(30.1)
H∗(Σ) k∗−−−−−−→ H∗(X)
i∗ ↘ ↗ j∗

H∗(WK)

where i, j, k are all inclusion maps. But k∗ = Id since Σ and X have the same homotopy

type. Hence i∗ must be injective. If all the m, d–points are nondegenerate, W is a Morse

function (a generic situation by Proposition 29.5) and according to Morse Theory (see

Section 61 in Appendix 2) WK has the homotopy type of a finite CW complex, with one

cell of dimension k for each critical point of index k in WK . In particular, we have the

following Morse inequalities:

#{critical points of index k} ≥ bk

where bk is the kth Betti number of WK . In the present case bk ≥
(
n
k

)
since H∗(Tn) ↪→

H∗(WK). Hence there are at least
∑n
k=1

(
n
k

)
= 2n critical points in this nondegenerate

case. IfW is not a Morse function, rewrite the diagram (30.1), but in cohomology, reversing

the arrows and raising the stars. Since k∗ = Id, j∗ must be injective this time. We know

that the cup length cl(X) = cl(Tn) = n + 1. By definition, this means that there are

n cohomology classes α1, . . . , αn in H1(X) such that α1 ∪ . . . ∪ αn 
= 0. Since j∗ is

injective, j∗α1 ∪ . . . ∪ j∗αn 
= 0 and thus cl(WK) ≥ n + 1. WK being compact, and

strictly forward invariant under the gradient flow, we can apply Lyusternik-Schnirelman

theory which implies thatW has at least n+1 critical points inWK (The proof of Theorem

1 in CH.2 Section 19 of Dubrovin & al. (1987) , which is for compact manifolds without

boundaries can easily be adapted to this case.) ��
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31. Asymptotically Linear Systems

In this section we swap the coercion condition (27.1) for asymptotic linearity of the map

(27.2). In this case, the periodic action functionW does not necessarily have any minimum.

The topological tool we use here is Proposition 64.6. We roughly sketch the content and

philosophy of this proposition in the next section.

We remind the reader of our assumption (27.2) : F = FN ◦ . . . ◦F1 is a product of lifts

of symplectic twist maps of T ∗Tn. The generating function Sk of Fk satisfies:

Sk(q,Q) =
1
2
〈Ak(Q− q), (Q− q)〉+Rk(q,Q)

with:

(27.2) Ak = Atk, det Ak 
= 0, det
N∑
1

A−1
k 
= 0, lim

‖Q−q‖→∞

∇Rk(q,Q)
‖Q− q‖ = 0

We view Rk as a global perturbation term. As before we let Lk(q,p) = (q+A−1
k p,p)

and L = LN ◦ . . . ◦ L1. Then L(q,p) = (q + Ap,p) with A =
∑N

1 A
−1
k . It is crucial to

note that, because of the conditions on the determinants of Ak and
∑
A−1
k , L and all the

Lk’s are completely integrable symplectic twist maps .

As before, we are looking for critical points of:

W (q) =
dN∑
k=1

Sk(qk, qk+1) =
dN∑
k=1

1
2

〈
Ak(qk+1 − qk), (qk+1 − qk)

〉
+
dN∑
k=1

Rk(qk, qk+1).

where q ∈ X i.e., qdN+1 = q1 +m. The first sum in the right hand side is the (quadratic)

action function for the integrable symplectic twist map L defined above. We change coor-

dinates Ψ : (q1, . . . , qdN−1) �→ (q,v) as in Section 28:

q =
1
dN

dN∑
1

qk

vk = qk+1 − qk −m/dN, k ∈ {1, . . . , dN − 1}.

In these coordinates,W is of the form:

W (q,v) = Q(v) + a · v + b+R(q,v)
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where R =
∑dN

1 Rk ◦ Ψ−1, Q is a homogeneous quadratic function and a, b are constant

vectors. The functionWL(v)
def
= Q(v)+a ·v+b comes up while replacing qk+1−qk by

vk +m/dN in the quadratic part of W . Thus WL is the action function of the integrable

map L in our new coordinates.

Postponing the proof thatQ(v) is nondegenerate, we conclude the proof of the theorem.

The maps τn (n ∈ ZZn), and σ introduced in Section 28 all map fiber to fiber diffeomor-

phically and linearly in the trivial bundle X → IRn with projection (q,v) �→ q. Hence

Q(q,v) = Q(v), which is quadratic nondegenerate in the fibers, induces in the quotient

X of X a function Q which is also quadratic nondegenerate in the fibers of the bundle

X → Tn. Finally, it is easy to see that the asymptotic condition on Rk given in (27.2)

implies that:

1
‖v‖

∂

∂v
(W −Q) =

1
‖v‖

(
∂R

∂v
+ a

)
→ 0 as ‖v‖ → ∞

in X and hence also in its quotient X. HenceW is a gpqi, in the sense of Proposition 64.6

which provides the estimates advertised and concludes the proof of Theorem 27.1.

We now turn to the proof that, given the assumption (27.2) ,Q(v) is nondegenerate. The

reader could work the linear algebra out directly. We prefer to give a dynamical argument

which might enlighten us a bit about the linear asymptotic condition. We need to show that the

quadratic formQ has zero kernel. This is true if and only if the linear equationdQ(v)+a = 0

has a unique solution. Now,m, d orbits of L are in one to one correspondence with critical

points ofWL in X, i.e. solutions of the following linear equations:

(31.1)
∂WL

∂q
(q,v) = 0

dQ(v) + a = 0.

Since WL does not depend on q, the first equation is always satisfied. Since the second

equation does not depend on q either, one solution of this equation yields exactly an n-

dimensional plane of solutions of the form (q,v∗), for a fixed v∗. We now show dynamically

that the set of solution of Equations (31.1) is indeed n dimensional, thereby proving that

the second equation has a unique solution. The solutions of (31.1) in X are in one to one

correspondence with them, d points of the mapL. SinceL is a linear, completely integrable

symplectic twist map , these orbits form an n dimensional plane parallel to the 0 section of
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T ∗Tn. Since the generating function of L is quadratic and the above change of coordinate

Ψ is affine, this plane corresponds 1-1 to an n-plane of critical points ofWL(q,v) in X. ��

32. Ghost Tori

On the Topological Part of the Proof of Theorem 27.1. In the proof of Theorem 27.1,

we invoked a topological “black box”, Proposition 64.6. This proposition says that, if a

functionW is asymptotically quadratic (in a precise sense) on a fiber bundle over a compact

manifoldM (the bundle is X and the manifold isM = Tn here), then the number of critical

point of the functionW is regimented by the cohomology ofM . We now try in a paragraph

to peal the successive layers that constitute the proof of Proposition 64.6 in order to extract

the gist of the ideas, and motivate the concept of ghost torus. Please see Appendix 2 for the

rigorous definitions of the concepts and for the proofs of the following statements.

The final layer in the proof of Proposition 64.6 (in the proof of the proposition itself and

in the proof of Proposition 64.1) consists, through changes of variables, in coming back to

the simpler situation of Proposition 62.4. This latter proposition investigates the gradient

flow of a function which has an isolating block B of the form:

✕

✕M D+
✕ D-

Fig. 32.0. The isolating neighborhood in Proposition 62.4.

Here, D+, D− are homeomorphic to disks of some euclidean spaces. The picture sug-

gests that the flow leaves the boundary of the block in either positive or negative time. The

proof of Proposition 62.4 uncovers (via Lemma 63.4) a relationship between the topology

of the largest invariant set (12) G for the gradient flow in B and the manifold M . More

12This set is often denoted by I instead of G in Appendix 2.
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precisely, one proves the existence of an injection H∗(M) ↪→ H∗(G). This a way to say

that the set G is at least as topologically complex as the manifoldM .

Ghost Tori. As roughly explained in the previous paragraph, the topological part of the

proof of Theorem 27.1 brings about the existence of an invariant setG for the gradient flow

of the action function W on X. We call this set G a ghost torus, because it lives in the

nether world of sequences (vs. the “real” world T ∗Tn where the dynamics takes place) and

has a topology at least as complex as that of the torus:H∗(Tn) ↪→ H∗(G). Looking a little

more closely at the proof of Proposition 64.6, one would see that G is in fact made of all

the bounded orbits of the gradient flow ofW in X. As we did with ghost circles in Chapter

3, we can indeed think of the ghost tori as the ghosts of the tori of T ∗Tn invariant under

a completely integrable symplectic twist map L. Indeed, the L-invariant torus of rotation

vectorm/d has a homeomorphic counterpart in the set X of sequences, namely, the critical

sequences corresponding to the periodic this torus is filled with. This torus of critical point

is the ghost torus of rotation vector m/d for L: it is easy to see that the gradient flow has

no other bounded orbits.

What are the ghost tori good for? My hope when I introduced the concept in Golé

(1989) was to prove the existence of irrational ghost tori, and thus a generalization of the

Aubry-Mather Theorem. Indeed, the only ghost tori whose existence we can secure for all

symplectic twist maps (at this point, and to my knowledge) are those in periodic, m, d-

sequence spaces. This prompted my investigation of the dimension 2 case in Golé (1992 a),

where the existence of ghost circles of all rotation number was indeed proven. Ghost circles

turned out to be very useful in ordering Aubry-Mather sets as well, see Chapter 3. [Beware

that the notion of ghost circle is actually more restrictive than that of ghost torus: a ghost

circle may miss some bounded orbits for the gradient flow in a given X and be a proper

subset of the ghost torus of a particular rotation number].

Unfortunately, two of the main tools that make things work in the dimension 2 case

are the monotonicity of the flow with respect to the natural order on numerical sequences,

and the notion of cyclic order. These two notions break down in higher dimension, and my

attempt to find irrational ghost tori by other means (eg. proving some regularity of subsets

of ghost tori and taking limits, or using Conley continuation in appropriate Banach spaces)

have been unsuccessful. At this point, I am rather pessimistic that such a program could be

carried out.
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On the other hand, the construction and point of view ghost tori are based on are,

for those who know it, very reminiscent of that of Floer Cohomology, where the set of

loops of bounded action is used to construct the Floer Cohomology complex. Indeed, the

variational/topological theory involved in this chapter and in Chapter 8 could be interpreted

as a discrete version of Floer’s theory for cotangent bundles (13). I hope it could be put to

some of the use Floer’s Theory has. It is interesting to note, for instance, that Floer’s theory

has concentrated on homotopically trivial periodic orbits – which is not the case here.

33. Hyperbolicity vs. Action Minimizers

Dynamical Types of Periodic Orbits. We now return to the connection between the dy-

namical type of a periodic orbit and the spectrum of Hessian of the action along that orbit,

which we started investigating in Section 29. For more detail, the reader is urged to consult

MacKay & Meiss (1983) and Kook & Meiss (1989).

In Section 56 of Appendix 1, it is shown that the dynamics of a linear symplectic map

around the origin in IR2n, which is a fixed point for such a map, are determined by the

spectrum of the map. This spectrum has the special property that if λ is an eigenvalue, than

so are 1/λ, λ and 1/λ. As a consequence, IR2n can be decomposed in even dimensional

eigenspaces of 3 flavors: elliptic (corresponding to pairs of conjugate eigenvalues on the

unit circle), parabolic (double eigenvalues 1 or -1), and hyperbolic (either real pairs λ, 1/λ

or complex quadruplets (λ, 1/λ, λ, 1/λ)). The origin is stable only if it is an elliptic fixed

point (or parabolic, if there are as many eigenvectors as the multiplicity of the eigenvalue

±1). We can now apply this stability analysis to periodic orbits of symplectic twist maps,

by considering the spectrum of DFN , where N is the period. There is obviously a loss of

control when taking this step. Hyperbolicity of the differential at a periodic orbit implies that

of the map itself (by the Hartmann-Grobman theorem, see Robinson (1994)), so instability

persists when passing from linear to nonlinear. On the other hand stability does not neces-

sarily survive. Indeed, in the elliptic case, stability cannot be guaranteed while perturbing

a linear simplectic map, except in dimension 2, when a certain, generic, twist condition is

satisified (Moser (1973) , Theorem 2.11). This is because KAM theory (see Chapter 6),

13Floer’s theory originally took place on compact manifolds. See Cielieback (1992) for a
cotangent bundle version of Floer’s theory.
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which guarantees stability in dimension 2, does not anymore in higher dimensions (an n

dimensional torus does not separate T ∗Tn, unless n = 2. However, these invariant tori can

be “sticky” and provide long term stability. At any rate, knowing the linear type of the orbit

gives a good amount of information about the dynamics around this orbit.

Hyperbolicity vs. Minimization: The Periodic Case. If λ1, 1/λ1, . . . , λn, 1/λn are the

eigenvalues of a linear symplectic map T , a convenient way to track down stability is with

the traces ρk = λk + 1/λk and residues Rk = 1
4 (2− ρk). Indeed, it is not hard to see that

the origin is stable only when the traces are real and fall in [−2, 2], or the residues are real

and in [0, 1]. Moreover the characteristic polynomial can be neatly expressed in terms of the

traces (use 1/λ(λk − λ)(1/λk − λ) = ρ− ρk):

(33.1) det (T − λId) = λn
n∏
k=1

(ρ− ρk).

We now look back at the matrixM(λ) introduced in Section 29:

M(λ) =




SdN22 + S1
11 S1

12 0 . . . 0 1
λS

dN
21

S1
21 S1

22 + S2
11 S2

12

. . . 0

0 S2
12

...
...

. . . 0
0 . . . 0 SdN−1

12

λSdN12 0 . . . 0 SdN−1
21 SdN−1

22 + SdN11



.

We showed in Section 29 that the eigenvalues of T = DFNq∗ are exactly the solutions of the

equation det M(λ) = 0. Hence we must have

(33.2) det M(λ) = C
n∏
k=1

(ρ− ρk)

for some constantC. It is not too hard to see thatC is in fact the product of the determinants

of (minus) the superdiagonal blocks: C =
∏N−1
k=1 det (−Sk12), which, if we assume the

convexity condition (27.4) of Lemma 27.2, or just the ordinary positive twist condition for

the dimension 2 case, happens to be positive. Finally, we set λ = 1 in (33.2) . In this case,

note thatM(1) = HessW (q∗), ρ− ρk = 4Rk and we obtain:

n∏
k=1

Rk =
(

1
4

)n det HessW (q∗)∏N−1
k=1 det (−Sk12)

.
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In the twist map case n = 1, there is only one residueR1, which is negative ifHessW (q∗)

is positive definite. This gives the following, due to MacKay & Meiss (1983):

Theorem 33.1 (MacKay & Meiss) Let z∗ be a periodic point for a positive twist map of

the cylinder, corresponding to a critical sequence q∗. Then, if q∗ is a nondegenerate

local minimum for the periodic action, the orbit of z∗ is hyperbolic.

The Infinite Orbit Case. It is interesting to note that Theorem 33.1 has counterexamples

in higher dimensions (see Arnaud (1989), where open sets of maps with no hyperbolic

fixed points are found arbitrarily close to an integrable map, even though the action does

have a minimum). However there is a higher dimensional result, due to Aubry et. al. (1991)

which relates hyperbolicity to a stronger form of minimization of arbitrary orbits. Given a

stationary infinite configuration q for a symplectic twist map on T ∗Tn (i.e. the q coordinate

of a (not necessarily periodic) orbit of the map), the Hessian ofW as the following infinite

matrix, similar toM(1):

HessW (q) =




. . .
. . .

β0 α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βq−1

βq−1 αq βq
. . .

. . .




with:
αk = ∂22S(qk−1, qk) + ∂11S(qk, qk+1), βk = ∂12S(qk−1, qk).

If q is a local minimizer, i.e. minimizesW locally on any finite segment, then the spectrum

ofHessW (x) is positive (hereHessW is seen as an operator on “variation” sequences in

l2, i.e. those sequences y such that
∑
‖yk‖2 < ∞). We say that q has a phonon gap if

moreover Spec(HessW (q)) ∈ [a,∞), a > 0. An invariant set has a phonon gap a if each

of the orbits it contains does, and if their phonon gaps are all greater or equal to a.

Theorem 33.2 (Aubry–Baesens–MacKay) Let Λ be a closed invariant set for a sym-

plectic twist map of IR2n and Λ′ be the associated set of critical sequences for W .
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Suppose that ∂12S(qk, qk+1), (∂12S)−1(qk, qk+1), ∂11S(qk, qk+1) and ∂22S(qk, qk+1)

are all bounded for q ∈ Λ′, k ∈ ZZ. Then Λ is uniformly hyperbolic if and only if Λ

has a phonon gap.

Concluding Remarks. 1) We have not talked about the different types of bifurcations that

govern the changes of periodic orbits from one type to another. We refer to Kook & Meiss

(1989) and the references therein for more information about this vast and interesting subject.

2) The above theorems are related to a general principle, first unveiled by Morse in Rie-

mannian geometry. In that context, Morse (see Milnor (1969) ) revealed a tie between

the index of the second derivative of the action of a segment of geodesic and the number

of conjugate points this segment has. In terms of more general Lagrangian systems, this

number can be formulated as a certain rotation index (the Maslov index) of Lagrangian

subspaces under the differential of the flow along an orbit segment (see Duistermaat (1976),

Conley & Zehnder (1984) ). If the orbit is hyperbolic, the Lagrangian tangent subspace can

be chosen to be the unstable manifold. It would be interesting to cast the above theorems in

a symplectic setting, using the invariance under symplectic reduction of the Maslov index

from the manifold graph(dW ) to that of graph(FN ).


