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THE AUBRY-MATHER THEOREM

8. Introduction

A. Motivation and Statement of the Theorem

The orbits of the twist map f0 whose lift is the completely integrable shear map given by

F0(x, y) = (x + y, y), possess the following four fundamental properties, some of which

we have yet to define:

(1) They lie on invariant circles which are graphs over the circle {y = 0}.
(2) They are ordered cyclically, like orbits of rotations on the circle.

(3) They come with all rotation numbers in (−∞,+∞).

(4) They are action minimizers.

The KAM theorem (see the Introduction and 34.1) implies that, in the measure sense,

most of these invariant circles will “survive” a smallperturbation of f0. The rotation numbers

of these survivors has to be very irrational (diophantine). One cannot hope for all these circles

to survive under arbitrary perturbation of the map f0. In fact, it is known numerically that

that for k > 0.9716354, the standard map has no invariant circle (see Meiss (1992) ). In the

context of the Standard family, the Aubry-Mather theorem implies that, for each invariant

circle of f0, and for each λ > 0, there exists an invariant set for fλ which can be seen

as the remnant of the invariant circle. We will define the terminology (cyclically ordered,

minimizers, Denjoy sets etc...) in subsequent sections.
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Theorem 8.1 (Aubry-Mather) Let F : IR2 → IR2 be the lift of a C2 twist map of the

cylinder with generating function S satisfying the following growth or coercion(6)

condition:

(8.1) lim
|X−x|→∞

S(x,X)→ +∞

Then F has orbits of all rotation numbers in IR. Moreover, these orbits can be

chosen to have the following properties:

(1) They are cyclically ordered

(2) They lie on closed F -invariant sets, called Aubry-Mather sets that form graphs

over their projection on the circle {y = 0} and that are conjugated to closed

invariant sets of lifts of circle homeomorphisms: either lifts of periodic orbits,

Denjoy Cantor sets (and optionally, orbits homoclinic to these sets) or the full

real line.

(3) They may be chosen to be action minimizers.

We will see that an invariant Cantor sets must occur each time there is no invariant circle

of a given irrational rotation number. The existence of these invariant Cantor sets was the

striking novelty of this theorem. For this reason, the term “Aubry-Mather sets” is sometimes

restricted to denote only the invariant Cantor sets of action minimizers.

Sketch of the Proof. We will find periodic orbits of all rational rotation numbers by mini-

mizing the periodic action Wmn on the space Xm,n of m,n sequences (see Proposition 5.7

for definitions). Aubry’s Fundamental Lemma will imply that Wmn-minimizers are “cycli-

cally ordered”, i.e. ordered like orbits of circle homeomorphisms. The cyclic order (CO)

property enables us to take limits of these periodic orbits (they will be in a compact set of

sequences if their rotation numbers are in a bounded set). Cyclic order also implies that the

rotation number of the limiting orbit exists and is the limit of the rotation numbers of the

periodic orbits.

One way in which this presentation differs from the excellent surveys of this subject

by Meiss (1992) or Hasselblat & Katok (1995) is the focus on the cyclic order property at

6 This is not quite the usual use of the term coercive. Usually, a numerical function φ on
a normed space is called coercive if lim‖u‖→∞ φ(u) = +∞.
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the level of sequences (that are not necessarily realized by orbits). I found it a convenient

bridge between the study of the dynamics of circle homeomorphisms (which appears in the

appendix to this chapter) and that of Aubry-Mather sets.

Aubry-Mather Theorem as Topological Stability. There are important notions in the theory

of dynamical systems that help to compare different systems. We refer to Hasselblat & Katok

(1995) for more details. Suppose f : M →M and g : N → N are two Cr, r ≥ 0 maps on

manifolds. We say that f and g are topologically conjugate if there is a homeomorphism

h : M → N such that h ◦ f = g ◦ h. Orbits of conjugate maps are in 1-1, continuous

correspondence (given by the map h). If the map h is continuous but only surjective (and

not necessarily injective), we say that g is a factor of f and we call h a semiconjugacy.

Finally, if f is a diffeomorphism and if it is a factor of any homeomorphisms in a C0

neighborhood of it, we say that f is topologically stable. In light of this terminology,

we can say that the Aubry Mather theorem is a “weak” stability statement: All maps in

a C1 neighborhood of the completely integrable map have the completely integrable map

restricted to irrational rotation invariant circles as a factor.

B. From the Annulus to the Cylinder

We precede our study by a Lemma, which implies that we can reduce our study to twist

maps of the cylinder.

Lemma 8.2 Let f be a Ck, k ≥ 2, twist map of a compact annulus A. Then f can

be extended to a Ck twist map of the cylinder C, in such a way that it coincides

with the shear map (x, y) 
→ (x + cy, y) outside a compact set. In particular, the

generating function of any lift of the extended map satisfies the growth condition

lim
|X−x|→∞

S(x,X)→ +∞.

To prove this lemma, one extends the generating function S from ψ(A) to IR2 by

interpolating it to the quadratic c
2 (X − x)2 outside of some appropriate compact set. See

Forni & Mather (1994) or Moser (1986a) . As a corollary of this lemma, we obtain the

following version of the Aubry-Mather theorem:
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Theorem 8.3 (Aubry-Mather on the compact annulus) Let F be the lift of a twist map

of the bounded annulus and suppose that the rotation numbers of the restriction of

F to the lower and upper boundaries are ρ−, and ρ+ respectively. Then F has orbits

of all rotation numbers in [ρ−, ρ+]. These orbits are minimizers, recurrent, cycli-

cally ordered and they lie on compact invariant sets that form (uniformly) Lipschitz

graphs over their projections. These sets may either be periodic orbits, invariant

circles or invariant Cantor sets on which the map is semi-conjugate to lifts of circle

rotations.

9. Cyclically Ordered Sequences and Orbits

If a map G : IR→ IR is the lift of a circle homeomorphism which preserves the orientation,

it is necessarily strictly increasing and must satisfyG(x+1) = G(x)+1. Hence, if {xk}k∈ZZ

is an orbit of G, it must satisfy:

(9.1) xk ≤ xj + p⇒ xk+1 ≤ xj+1 + p, ∀ k, j, p ∈ ZZ.

We will say that a sequence {xk}k∈ZZ in IRZZ is Cyclically Ordered, (or CO in short) if it

satisfies (9.1) . Clearly the CO sequences form a closed set for the topology of pointwise

convergence in IRZZ: x(j) → x whenever xjk → xk for all k. Note that this topology is

the same as the product topology on the space of sequences. Using the partial order on

sequences (it comes with three degrees of strictness):

x ≤ y ⇔ {∀k, xk ≤ yk}

x < y ⇔ {∀k, xk ≤ yk and x �= y}

x ≺ y ⇔ {∀k, xk < yk}

we let the reader check that an equivalent definition of CO sequences is:

(9.2) ∀m,n ∈ ZZ, τm,nx ≥ x or τm,nx ≤ x

where

(τm,nx)k = xk+m + n.
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We say that the orbit {(xk, yk)}k∈ZZ of a twist map is a Cyclically Ordered orbit or CO

orbit if {xk}k∈ZZ is CO. These orbits come with various other names in the literature: Well

Ordered (does not evoque the cyclic ordering), Monotone (is used in too many contexts),

Birkhoff (this order was apparently never mentioned by Birkhoff).(7) The following lemma,

whose proof is in great part due to Poincaré (1885), is central to our use of CO sequences.

Lemma 9.1 Let {xk}k∈ZZ be a CO sequence then ρ(x) = limk→∞ xk/k exists and:

(9.3) |xk − x0 − kρ(x)| ≤ 1.

Moreover x→ ρ(x) is a continuous function on CO sequences, with the topology of

pointwise convergence.

Define:

CO[a,b] = {x ∈ CO | ρ(x) ∈ [a, b]}.

The following lemma shows that it is easy to find limits of CO sequences, as long as their

rotation numbers are bounded.

Lemma 9.2 The sets CO[a,b]/τ1,0 and CO[a,b] ∩ {x ∈ IRZZ | x0 ∈ [0, 1]} are compact

for the topology of pointwise convergence.

We give the proofs of both these lemmas in the appendix to this chapter. The fact, given

by these lemmas, that the rotation number behaves well under limits of CO-sequences is

one of the essential points in the theory of twist maps that does not generalize to higher

dimensional maps: to our knowledge, there is no dynamically natural definition of CO

sequences in IRn, n ≥ 2 which ensures the existence of rotation vectors which behave well

under limits. Note that there is, however, a natural generalization of CO sequences in the

context of maps ZZd → IR, see Chapter 9.

There is a visual way to describe CO sequences, which we now come to. A sequencex in

IRZZ is a function ZZ→ IR. One can interpolate this function linearly and obtain a piecewise

affine function IR→ IR that we denote by t 
→ xt. The graph of this function is sometimes

7 This is not an indictment of the authors who have used these terminologies: the author
of this book has himself used them all in various publications...
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called the Aubry diagram of the sequence. We say that two sequences x and w cross if

their corresponding Aubry diagrams cross. There are two types of crossing: at an integer

k, in which case (xk−1 − wk−1)(xk+1 − wk+1) < 0 or at a non integer t ∈ (k, k + 1), in

which case (xk − wk)(xk+1 − wk+1) < 0. These inequalities can be taken as a definition

of crossings. Non–crossing of two sequences can be put in terms of the partial order on

sequence: x,y do not cross if and only if x ≤ y . In particular a sequence x is CO if

and only if it has no crossing with any of its translates τm,nx.

▲

●

●

▲

xj

wj+1
wj

xj+1

●

●

▲
●

●

▲

▲

▲

▲ ●
wk = xk

xk+1

wk+1

xk+1

xk-1

▲

wk-1

Fig. 9.0. Aubry diagrams of sequences and their crossings: in this example the sequences
x and w have crossings at the integer k and between the integers j and j + 1.

10. Minimizing Orbits

Throughout the rest of this chapter, we consider a lift F of a given twist map f of the

cylinder, and its corresponding generating function S, action function W , periodic action

function Wmn and change of variable ψ. A sequence segment (xk, . . . , xm) is (action)

minimizing if

W (xk, . . . , xm) ≤W (yk, . . . , ym)

for any other sequence segment (yk, . . . , ym) with same endpoints: xk = yk, xm = ym.

Since minimizing segments are necessarily critical forW , they correspond to orbit segments

called (action) minimizing orbit segment. A bi-infinite sequence is called a (global action)

minimizer if any of its segments is minimizing. The orbit it corresponds to is a minimizing

orbit, or simply minimizer, when the context is clear. Note that the set of minimizers is

closed under the topology of pointwise limit (see Exercise 10.5). Finally a Wmn-minimizer

is a periodic sequence in Xm,n that minimizes the function Wmn.
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A recurrent theme in the Calculus of Variation is that minimizers have regimented

crossings. In the case of geodesics on a Riemannian manifold, geodesics that (locally)

minimize length cannot have conjugate points, i.e. small variations with fixed endpoints of

a minimizing geodesic only intersect that geodesic at the endpoints ( Milnor (1969) ), and

geodesics that minimize length globally cannot have self intersections (Manẽ (1991), page

102 ). We will see, in the present theory, that minimizers satisfy a non-crossing condition,

which implies that Wmn–minimizers (and more generally, recurrent minimizers) are CO.

Lemma 10.1 (crossing) Suppose that (x− w)(X −W ) ≤ 0. Then:

S(x,X) + S(w,W )− S(x,W )− S(w,X) ≤ 0,

and equality occurs iff (x− w)(X −W ) = 0

Proof . We can write:

S(x,X)− S(x,W ) =
∫ 1

0

∂2S(x,Xs)(X −W )ds,

where Xs = (1− s)W + sX . Applying the same process to h(x) = S(x,X)− S(x,W ),

we get:

S(x,X) + S(w,W )− S(x,W )− S(w,X) = h(x)− h(w) =

−
∫ 1

0

∫ 1

0

∂12S(xr, Xs)(X −W )(x− w)dsdr = λ(X −W )(x− w)

for some strictly negative λ, by the positive twist condition and for xr = (1−r)w+rx. ��
The following is a watered down version of the Fundamental Lemma in Aubry & Le

Daeron (1983). We follow Meiss (1992) :

Lemma 10.2 (Aubry’s Fundamental Lemma) Two distinct minimizers cross at most

once.

Proof . Suppose that x and w are two distinct minimizers who cross twice. We perform

some surgery on finite segments ofx andw to get two new sequencesx′ andw′ with at least

one of them of lesser action, contradicting minimality. There are three cases to consider: (i)
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both crossings are at non integers, (ii) one crossing is at an integer, (iii) both crossings are

at integers.

▲

●

●

▲

xj=w’j

wj+1= w’i+1

x’j=wj

xj+1= w’i+1

●

●

▲
●

●

▲

▲

▲

▲

▲ ●wi = xi= x’i= w’i

xi+1= w’i+1

x’i+1= wi+1

wi-1= w’i-1

xi-1= x’i-1

Fig. 10.2. A crossing of Case (ii)

Case (i): Let t1 ∈ (i− 1, i) and t2 ∈ (j, j + 1) be the crossing times. Define:

x′k =
{
wk if k ∈ [i, j]
xk otherwise

w′k =
{
xk if k ∈ [i, j]
wk otherwise

Letting W denote the action over an interval [N,M ] containing [j − 1, k + 1], we easily

compute that:

W (x′) + W (w′)−W (x)−W (w) =

S(xi−1, wi) + S(wi−1, xi)− S(xi−1, xi)− S(wi−1, wi)

+S(xj , wj+1) + S(wj , xj+1)− S(xj , xj+1)− S(wj , wj+1).

The Crossing Lemma 10.1 shows that this difference of actions is negative, contradicting

the minimality of x and w.

Case (ii): In this case, only one crossing will contribute negatively to the difference of

action of new and old sequences. We still get a contradiction.

Case (iii) Let i − 1 and j + 1 be the crossing times of x and w, and construct x′ and

w′ as before. In this case the difference in action between old and new segments is null.

The sequences x′,w′ must be minimizing, and hence correspond to orbits. But we have

xi−2 = w′i−2, xi−1 = w′i−1. Hence the points ψ−1(xi−2, xi−1) and ψ−1(w′i−2, w
′
i−1)

of IR2 are the same and thus generate the same orbit under F . This in turn implies that

x = w, a contradiction to our assumption. ��
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Corollary 10.3 Wmn-minimizing sequences are CO and their set is completely ordered

for the partial order on sequences.

Proof . Since the proof of Aubry’s Lemma deals with finite segments of sequences only,

it also applies to show that two Wmn-minimizers in Xm,n, may not cross twice within

one period n. But two m,n-periodic sequences that cross once must necessarily cross twice

within one period. Hence two Wmn-minimizers cannot cross at all. It is easy to check that

Wmn is invariant under τi,j for all integers i, j. Thus, if x is a Wmn minimizer, τi,jx is also

a Wmn-minimizer. Since they do not cross, one must have either x ≤ τi,jx or τi,jx ≤ x,

for all i, j ∈ ZZ, i.e. x is CO. ��
We end this section by a proposition which we will need in Chapter 3.

Proposition 10.4 Any Wmn-minimizer is a minimizer.

Proof . We will show that if x is a Wmn-minimizer, it is also a Wkmkn minimizer for

any k. This implies that x is a minimizer on segments of arbitrary length: if x is a Wkmkn

minimizer, any segment of x of length less than kn is minimizing. Hence x is a minimizer.

Now, take aWkmkn-minimizerw. Ifw is notm,n-periodic, thenw and τm,nw are distinct.

By Corollary 10.3, they cannot cross. Suppose, say, that τm,nw > w. Since τm,n trivially

preserves the (strict) order on sequences, we must also have τkm,nw > w, a contradiction to

the fact thatw is km, kn- periodic. Hencew is in Xmn and its action over intervals of any

length multiple of n cannot be less than that of x. Hence x is also a Wkmkn minimizer. ��

Exercise 10.5 Show that the set of minimizers (either sequences or orbits) is closed under
pointwise limits.

Exercise 10.6 a) Show that the set of recurrent minimizers of rotation number ω is com-
pletely ordered. (Hint. Mimic the proof of Proposition 10.4 : if an appropriate inequality is
not satisfied, there must be a crossing. By recurrence, there is another one, a contradiction
to Aubry’s Lemma).
b) Show that a minimizer corresponding to a recurrent (not necessarily periodic) orbit of
the twist map is CO.
(Remember that the orbit zk of a dynamical system is called recurrent if z0 is the limit of
a subsequence zkj . Equivalently, z0 is in its own ω–limit set).
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11. CO Orbits of All Rotation Numbers

A. Existence of CO Periodic Orbits

We prove that the set of Wmn-minimizers is not empty. By Corollary 10.3 this will show

the existence of CO orbits of all rational rotation numbers.

Proposition 11.1 Let F be the lift of a twist map with a generating function which

satisfies the coercion condition lim|X−x|→∞ S(x,X) → +∞. Then, for all m,n,

Wmn has a minimum on Xm,n.

Proof . Note that, by periodicity of S, the ranges of Wmn on Xm,n and on its subset

Xm,n ∩{x1 ∈ [0, 1]} are the same: we can translate any sequence of Xm,n by an integer to

bring it to that subset without changing its action. Now, if S satisfies the coercion condition,

then for x ∈ Xm,n ∩ {x1 ∈ [0, 1]}, lim‖x‖→∞Wmn(x) → +∞: if ‖x‖ → ∞ and x1

remains bounded, at least one |xk − xk−1| must tend to +∞. In particular, for any large

enough K ∈ IR,W−1
mn(−∞,K] is bounded and not empty. Since, by continuity, this set is

also closed, it must be compact. Thus Wmn attains its minimum on that set. ��
An interesting sufficient condition for S to satisfy the coercion condition is that the

“twist” of the map be uniformly bounded below (see MacKay & al. (1989)):

Proposition 11.2 Let the twist condition for the lift of a twist map F be uniform:

∂X(x, y)
∂y

> a > 0 ∀(x, y) ∈ IR2.

Then there is a constant α, and two strictly positive constants β and γ such that :

S(x,X) ≥ α− β |X − x|+ γ |X − x|2 .

Proof . We can write:

S(x,X) = S(x, x) +
∫ 1

0

∂2S(x,Xs)(X − x)ds,

where Xs = (1− s)x + sX . Applying the same process to ∂2S, we get:
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S(x,X) = S(x, x) +
∫ 1

0

∂2S(Xs, Xs)(X − x)ds

−
∫ 1

0

ds

∫ 1

0

∂12S(Xr, Xs)(X − x)2dr
.

We can conclude the proof of the lemma by taking

α = min
x∈IR

S(x, x), β = max
x∈IR
|∂2S(x, x)|

(α, β exist by periodicity of S) and γ = a/2. ��

B. Existence of CO Orbits of Irrational Rotation Numbers

The existence of CO orbits of irrational rotation numbers is a simple consequence of the exis-

tence of CO periodic orbits: pick a sequencex(k) ofWmk,nk–minimizers, withmk/nk → ω

as k →∞. By using appropriate translations of the type τm,0 onx(k) (which neither change

their rotation numbers, nor the fact that they are minimizers) we can assume thatx(k)
0 ∈ [0, 1].

The sequence mk/nk is bounded and hence, by Corollary 10.3 the sequences x(k) are in

CO[a,b] ∩{x ∈ IRZZ | x0 ∈ [0, 1]} for some a, b ∈ IR. Lemma 9.2 guarantees the existence

of a converging subsequence in CO[a,b] and Lemma 9.1 shows that the limit of this sub-

sequence has rotation number ω. Finally, note that the periods nk go to infinity as k goes

to infinity. In particular, any finite segment of a limit x of x(k) is the limit of minimizing

segments, hence minimizing itself (Exercise 10.5). ��

12. Aubry-Mather Sets

We have proven Part (1) and (3) of the Aubry-Mather theorem: existence of cyclically

ordered, minimizing orbits of all rotation numbers. We now prove Part (2): the cyclically

ordered orbits that we found in the previous section lie on Aubry-Mather sets, which we

describe in this section.

We say that a set M in IR2 is F -ordered if, for z, z′ in M ,

π(z) < π(z′)⇒ π(F (z)) < π(F (z′)),

where π is the x-projection. A set is F -ordered invariant if it is F -ordered and invariant

under both F and F−1. On such a set, the sequences x,x′ of x–coordinates of z and z′
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must satisfy x ≺ x′. An example of F -ordered invariant set is the set of points in a CO

orbit and all their integer translates. In fact, this can be used to give an alternative definition

of CO orbits: an orbit is CO if and only if its points form an F -ordered invariant set. Note

that an invariant circle which is a graph is F -ordered invariant (we will see in Chapter 6

that all invariant circles are graphs). We now want to explore the properties of F -ordered

invariant sets. Crucial to the properties of these sets is the following ratchet phenomenon

(I owe this terminology to G.R. Hall), which is a somewhat quantitative expression of the

twist condition. This phenomenon, or condition is best described by the following picture:

z
F(z)

●●

●

●

●

●

z1

F(z2)

z2

F(z1)

F

Θv Θh

Fig. 12.0. The ratchet phenomenon for the lift of a positive twist map F : there are two
cones (shaded in this picture) Θv and Θh in IR2 centered around the y and x-axes respec-
tively, such that, if z, z′ are two points of IR2 with z′ ∈ z + Θv, then F (z′) ∈ F (z) + Θh.
More precisely, for a positive twist map z′ ∈ z+Θ+

v ⇒ F (z′) ∈ F (z)+Θ+
h , where the half

cones Θ+
h , Θ

+
v have the obvious meaning. The same holds for the half cones Θ−h and Θ−v .

If g is negative twist (eg. F−1), then the signs are reversed. The same cones can be used
for F−1 as for F .

Lemma (Ratchet) 12.1 Let F be the lift of a twist map satisfying ∂X
∂y > a > 0 in

some region. Then, in that region, F satisfies the ratchet phenomenon for some

cones Θv, Θh whose angles only depend on a.

Proof . See Exercise 12.9.

Proposition 12.2 The closure of an F–ordered invariant set is F–ordered and in-

variant.

Proof . The invariance is by continuity of F . Let M be an F -ordered invariant set. We let

the reader prove that the uniform twist condition ∂X
∂y > a > 0 is automatically satisfied on an
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F -ordered invariant set (essentially, such a set is necessarily bounded in the y direction, see

Exercise 12.9). Suppose that, in the closureM ofM there are z, z′ inM , with π(z) < π(z′)

but π(F (z)) = π(F (z′)) (the worst case scenario). By the ratchet phenomenon for F−1,

F (z) must be aboveF (z′) and π(F 2(z′)) < π(F 2(z)), i.e. the x orbits of z and z′ switched

order. This is impossible since in M the (strict) order is preserved by F .

Proposition 12.3 If M is an F -ordered invariant set, then it is a Lipschitz graph

over its projection: there exists a constant K depending only on F such that, if (x, y)

and (x′, y′) are two points of M , then:

|y′ − y| ≤ K|x′ − x|

with K only depending on the twist constant a = infM ∂X
∂y .

Note that a, and hence K could also be chosen the same for all F -ordered sets in a

compact region.

Proof . The proof of Lemma 12.2 shows that if M is F -ordered, we cannot have z, z′

in M and π(z) = π(z′) unless z = z′. Hence π is injective on M , and M is a graph.

To show that M forms a Lipschitz graph over its projection, let z and z′ be two points of

M and x and x′ the corresponding sequences of x-coordinates of their orbits. Assuming

π(z) < π(z′), we must have x ≺ x′. If z′ ∈ z + Θ+
v , the ratchet phenomenon implies

that F−1(z′) ∈ F−1(z) + Θ−h , i.e. x′−1 > x−1, a contradiction. Likewise z′ cannot be in

the cone z + Θ−v , and hence it must be in the cone complementary to Θv at z. This cone

condition is easily transcribed into a uniform Lipschitz condition |y′− y| < K|x′−x|. ��

Remark 12.4 Applied to the special case of invariant circles, Proposition 12.3 shows that

any invariant circle for a twist map which is a graph is Lipschitz. This is a theorem originally

due to Birkhoff, who also proved (see Chapter 6) that all non-homotopically trivial invariant

circles for twist maps must be graphs.

Lemma 12.5 All points in an F -ordered set have the same rotation number.
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Proof . This is a consequence of the simple fact (Lemma 13.3 in the appendix) that if

x < x′ are two CO sequences, they must have the same rotation number. ��

Definition 12.6 An Aubry-Mather set M for the lift F of a twist map f of the cylinder is

a closed, F -ordered invariant set which is also invariant under the integer translation T .

Note that some authors call Aubry-Mather sets the projections of the above sets to the

annulus. Exercise 12.9 shows that these projections are necessarily compact. Taking the

closure of all the integer translates of the points in the CO orbits found in the previous

section, we immediately get:

Theorem 12.7 Let F be the lift of a twist map of the cylinder. Then F has Aubry-

Mather sets of all rotation numbers in IR. Any CO orbit is in an Aubry-Mather

set.

Note that this theorem gives part (b) of the Aubry-Mather theorem.

Theorem 12.8 (Properties of Aubry-Mather sets) Let M be an Aubry-Mather set for

a lift F of a twist map of the cylinder.

(a) M forms a graph over its projection π(M), which is Lipschitz with Lipschitz

constant only depending on the twist constant a = infM ∂X
∂y .

(b) All the orbits in M are cyclically ordered and they all have the same rotation

number, which is called the rotation number of M .

(c) The projection π(M) is a closed invariant set for the lift of a circle homeomor-

phism, and hence F restricted to M is conjugated to the lift of a circle homeomor-

phism via π.

Proof of Theorem 12.8. We have shown in Lemmas 12.5 and 12.6 that (a) and (b) are

in fact properties of F -ordered invariant sets. As for Property (c), since π is one to one

on M , F induces a continuous (Lipschitz, in fact) increasing map G on π(M), defined by

G(π(z)) = π(F (z). Since M and thus π(M) are invariant under integer translation, we

have G(x+ 1) = G(x) + 1. The set π(M) is closed and invariant under integer translation
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since M is. If π(M) = IR, then G is the lift of a circle homeomorphism. If π(M) �= IR,

then its complement is made of open intervals. Extend G by linear interpolation on each

interval in the complement of π(M). Since G is increasing on π(M), its extension to IR

(call it G) is increasing as well, continuous and G(x + 1) = G(x) + 1, hence the lift of a

circle homeomorphism. By constructionG(π(z)) = π(F (z)), and π
∣∣
M

is a continuous, 1-1

map on the compact set M , hence a homeomorphism M → π(M). Thus π is a conjugacy

between F on M and G on π(M), which is a closed and invariant set under G and G−1. ��

Recapitulation on the Dynamics of Aubry-Mather Sets. If G is the lift of a circle homeo-

morphism constructed in the proof of Theorem 12.7, the possible dynamics for invariant sets

of circle maps described in the appendix become, under the conjugacy, possible dynamics

on Aubry-Mather sets M for F . Hence an Aubry-Mather set M is either:

(i) an ordered collection of periodic orbits with (possibly) heteroclinic orbits joining them,

or

(ii) the lift of an f -invariant circle, or

(iii) an F -invariant Cantor set with (possibly) homoclinic orbits in its gaps.

The rotation number of M is necessarily rational in Case (i), and necessarily irrational

in Case (iii). In Case (ii), M may either have a rational or irrational rotation number, as

the example of the shear map shows. However, maps with rational invariant circles are

non generic. Indeed, as a circle map, the restriction of the twist map to the invariant circle

must have a periodic orbit. For generic twist maps, periodic orbits must be hyperbolic and

the circle must be made of stable and unstable manifolds of such orbits, that coincide. But

generically, such manifolds intersect transversally. See Herman (1983) and Robinson (1970)

for more details. As for homoclinic and heteroclinic orbits as in (i) and (iii), they have been

shown to exist each time there are no invariant circles of the corresponding rotation numbers,

see Hasselblat & Katok (1995) , Mather (1986) .

The feature that is striking in the Aubry-Mather theorem is the possible occurrence of

Aubry-Mather sets as in (iii). The F -invariant Cantor sets have been called Cantori by

Percival (1979)who constructed them for the discontinuous sawtooth map (a standard map

with sawtooth shaped potential). This type of dynamics does occur in twist map, since it can

be shown that many maps have no invariant circles, and hence the irrational Aubry-Mather

sets must be of type (iii), i.e. contain Cantori.
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Although one can construct many Aubry-Mather sets that are not made of minimizers

(Mather (1985)), the name “Aubry Mather set” is often reserved to the action minimizing

Cantori Mω as defined below:

Proposition 12.9 For each irrational rotation number ω there is a unique Cantorus

Mω made of recurrent minimizing orbits of rotation number ω. The closure of any

CO minimizing orbit of rotation number ω is contained in Mω.

Proof . A CO minimizing orbit forms anF -ordered set, contained in an Aubry-Mather set,

and hence conjugated to an orbit of a circle homeomorphism. The closure of the irrational

CO minimizing orbit is therefore in a Cantorus, conjugated to the ω–limit set of the circle

homeomorphism. As limit of minimizers, this Cantorus is made up of minimizers. We now

prove that this Cantorus is unique: suppose there are two of them. Exercise 10.6 implies

that the (disjoint) union of these two Cantori forms an F–ordered set, hence conjugated to

a closed invariant set of a circle homeomorphism. Each Cantorus is the ω-limit set of its

points. This is a contradiction to the uniqueness of ω limit sets of circle homeomorphisms

proven in Theorem 13.4. ��

Exercise 12.9 a) Prove the Ratchet Lemma 12.1.

b) Prove that if F is an F -ordered invariant set, then the projection proj(M) of M to
the cylinder is compact, f -invariant. Deduce from this that M satisfies the uniform twist
condition ∂X/∂y > a > 0. [Hint. Use Lemma 9.2].

Exercise 12.10 Show that a twist map f restricted to a Cantorus (irrational Aubry-Mather
set) is semiconjugate to a rotation of the same rotation number.

13. Appendix: Cyclically Ordered Sequences and Circle Maps

In this section, we prove Lemma 9.1, and Lemma 9.2. We then recover important facts

about circle homeomorphisms and their invariant sets using the language of CO sequences.
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A. Proofs of Lemmas 9.1 and 9.2

We recall the statements of each lemma before proving it. Part of the proof below is classical,

due to Poincaré in his study of circle homeomorphisms.

Lemma 9.1 Let {xk}k∈ZZ be a CO sequence then ρ(x) = limk→∞ xk/k exists and:

(13.1) |xk − x0 − kρ(x)| ≤ 1.

Moreover x → ρ(x) is a continuous function on CO sequences, when the set of

sequences has been given the topology of pointwise convergence.

Proof . Let x be a CO sequence. We first prove that the sequence {xn−x0
n }n∈ZZ is Cauchy

as n→ ±∞. We do the case n→ +∞ first.

Given n ∈ IN, let αn be the integer such that:

(13.2) x0 + αn ≤ xn < x0 + αn + 1.

We prove by induction that

(13.3) x0 + kαn ≤ xkn < x0 + kαn + k, ∀k ∈ IN.

Indeed, step 1 in the induction is just (13.2) , and if we assume step k, i.e. (13.3) then,

since x is CO, we get

xn + kαn ≤ x(k+1)n < xn + kαn + k.

Using (13.2) this gives x0 + (k + 1)αn ≤ x(k+1)n < x0 + (k + 1)αn + (k + 1), which is

the step k + 1 and finishes the induction.

Dividing (13.3) by k we get

(13.4) αn ≤
xkn − x0

k
< αn + 1.

Since this is true for all k > 0, we must have, for all n �= 0, the two equivalent inequalities

(13.5)
∣∣∣∣xkn − x0

k
− xn − x0

1

∣∣∣∣ ≤ 1⇔
∣∣∣∣xkn − x0

kn
− xn − x0

n

∣∣∣∣ ≤ 1
|n| .

Writing zn = xn−x0
n , and assuming m > 0, n > 0, the triangular inequality gives:
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(13.6) |zn − zm| ≤ |zn − zmn|+ |zmn − zm| ≤
1
n

+
1
m
,

and hence {zn}n∈IN, is a Cauchy sequence whose limit we call ρ(x).

Let m→∞ in (13.6), and multiply by n:

(13.7) |xn − x0 − nρ(x)| ≤ 1.

To see how the case n → −∞ follows, note that in all the above we could have replaced

x0 by an arbitrary xm,m ∈ ZZ and obtained:

(13.8) |xn − xm − (n−m)ρ(x)| ≤ 1 ∀m,n ∈ ZZ.

We let the reader check that this last inequality implies that limn→−∞ zn = ρ(x).

The continuity of ρ is also a consequence of (13.7). Indeed, suppose the CO sequences

x(j) tend to x pointwise as j → ∞. Constructing sequences z(j) as above, and denoting

ρ(x(j)) = ωj , (13.7) yields

(13.9) |z(j)
k − ωj | ≤

1
k
, |zk − ρ(x)| ≤ 1

k
.

Since z(j) → z, for all k and ε > 0,

|ωj − ωi| ≤ |ωj − z
(j)
k |+ |z

(j)
k − z

(i)
k |+ |z

(i)
k − ωi| ≤

2
k

+ ε

whenever i, j are big enough. Hence {ωk}k∈ZZ is a Cauchy sequence, whose limit we denote

by ω. Letting j →∞ in (13.9) yields ω = ρ(x). ��

Lemma 13.1 The sets CO[a,b]/τ1,0 and CO[a,b] ∩{x ∈ IRZZ | x0 ∈ [0, 1]} are compact

for the topology of pointwise convergence.

Proof . We have already remarked that, trivially, CO is closed for pointwise convergence,

i.e. the product topology on sequences. Lemma 9.1 implies that CO[a,b]∩{x | x0 ∈ [0, 1]}
is a closed subset of the set:

{x ∈ IRZZ | xk = x0 + kω + yk, (x0, ω,y) ∈ [0, 1]× [a, b]× [−1, 1]ZZ,with y0 = 0}

which is compact for the product topology, by Tychonov’s theorem. We let the reader derive

a similar proof for CO[a,b]/τ1,0. ��
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B. Dynamics of Circle Homeomorphisms

Rotation Numbers and Circle Homeomorphisms. The orbits of an orientation preserving

circle homeomorphism are by definition Cyclically Ordered. From Lemma 9.1, we can

deduce the following theorem, due to Poincaré (1885):

Theorem 13.2 All the orbits of the lift F of an orientation preserving circle homeo-

morphism f have the same rotation number, denoted by ρ(F ). The rotation number

ρ is a continuous function of F , where the set of lifts of homeomorphisms of the

circle is given the C0 topology.

Proof . We start by a simple but useful lemma.

Lemma 13.3 If two CO sequences x,x′ satisfy x < x′ then ρ(x) = ρ(x′).

Proof . The rotation numbers are the respective asymptotic slopes of the Aubry diagram

of x and x′. Thus, if ρ(x) �= ρ(x′), the Aubry diagrams of x and x′ must cross. In this

case, there must be a k0 and a k1 such that xk0 > x′k0 and xk1 < x′k1 . This contradicts

x < x′. ��
Continuing with the proof of Theorem 13.2, since F is increasing, two CO sequences

x and w corresponding to distinct orbits of F must satisfy x ≺ w or w ≺ x. From the

previous lemma x andw have same rotation number. Finally, if fn → f in the C0 topology,

then the fn orbit of a point x (a CO sequence) tends pointwise to the f orbit of x. By Lemma

9.1, lim ρ(fn) = lim ρ({fkn(x)}k∈ZZ) = ρ({fk(x)}k∈ZZ) = ρ(f). ��

Dynamical classification of circle homeomorphisms. We now review the classification

of circle homeomorphisms by Poincaré (1885). Recall some general terminology from

dynamical systems. The Omega limit set ω(x) of a point x under a dynamical system f

is the set of limit points of the forward orbit, i.e. the set of limit points of all subsequences

{xkj} where xk = fk(x) and kj → +∞ as j → +∞. Likewise, the Alpha limit set α(x)

is the set of limit points of the backward orbit. A minimal invariant set for a dynamical

system is a closed, (forward and backward) invariant set which contains no closed invariant

proper subset. A heteroclinic orbit between two invariant sets A and B is the orbit of a

point x such that α(x) ⊂ A and ω(x) ⊂ B. The term homoclinic is used when A = B.
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Theorem 13.4 Let f be a circle homeomorphism and F a lift of f . If ρ(F ) is rational,

then, for any x ∈ S1, ω(x) and α(x) are periodic orbits. The orbit of x is either

periodic (in which case x ∈ ω(x) = α(x)) or it is heteroclinic between α(x) and

ω(x).

If ρ(F ) is irrational, then, for any x, x′ ∈ S1, α(x) = α(x′) = ω(x) = ω(x′). Call

this set Ω(f). Then Ω(f) is either the full circle, or a minimal invariant set which

is a Cantor set. In the first case any orbit is dense in the circle, and f is conjugated

to a rotation by ρ(F ). In the second case, a point x of S1 is either in Ω(f) and

recurrent, or it is homoclinic to Ω(f), a “gap orbit”, and f is semi-conjugate to a

rotation by ρ(F ).

We remind the reader that a Cantor set K is a closed, perfect, and totally disconnected

topological set. Perfect means that each point in K is the limit of some (not eventually

constant) sequence in K, and totally disconnected means that, given any two points a and

b in K, one can find disjoint closed sets A and B with a ∈ A, b ∈ B and A∪B = K. In the

real line or the circle, a closed set is totally disconnected if and only if it is nowhere dense.

A set X is nowhere dense if Interior(Closure(X)) = ∅.

Proof of Theorem 13.4.

Rational rotation number. Suppose ρ(F ) = m/n. Then Fn(·) − m must have a fixed

point, otherwise for all x ∈ IR, Fn(x)− x �= m and we can assume Fn(x)− x > m. By

compactness of S1, ρ(F ) > m/n, a contradiction. Hence F has an m,n-periodic orbit. By

continuity, on any interval I where Fn − Id − m is non zero, it must stay of a constant

sign. This sign describes the direction of progress of points inside the orbit of I towards

its endpoints: they must be heteroclinic to the endpoint orbits. Conversely, if F has an

m,n-periodic orbit, its rotation number and thus that of F must be m/n.

Irrational rotation number. Suppose ρ(F ) is irrational. Let x ∈ S1 and denote by x =

{xk}k∈ZZ its orbit under f (with x = x0). Suppose ω(x) = S1. We show that ω(x′) = S1

for any other x′ ∈ S1. Suppose not, and there is an interval (a, b) which contains no

x′k = fk(x′). But (a, b) must contain some [xn, xm] by density of x. Again by density,

the intervals f−i(m−n)[xn, xm] must cover S1 and hence f i(m−n)x′ ∈ (a, b) for some i, a
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contradiction. We guide the reader through the proof that f is conjugated to a rotation by

ρ(f) in Exercise 13.6.

Suppose ω(x) �= S1. Then, since ω(x) is closed, its complement is the union of open

intervals. Take another point x′. We want to show that ω(x′) = ω(x). We will prove that

ω(x′) ⊂ ω(x): by symmetry ω(x) ⊂ ω(x′). This is obvious if x′ ∈ ω(x). Suppose not.

Then x′ is in an open interval I in the complement ofω(x) whose endpoints are inω(x). The

orbit of I is made of open intervals in the complement of ω(x) whose endpoints are orbits in

ω(x). Since there is no periodic orbit, these intervals are disjoint: by the intermediate value

theorem fk(I) ⊂ I would imply the existence of a fixed point for fk, hence a periodic

orbit. The length of these intervals must tend toward 0 under iteration. Thus the orbit of

x′ approaches the endpoint orbit of I arbitrarily i.e. the orbit of x′ is asymptotic to ω(x).

Hence ω(x′) ⊂ ω(x). In particular ω(x) = Ω(f) is a minimal invariant set: any closed

invariant subset of Ω(f) must contain the ω-limit set of any of its point, hence Ω(f) itself.

We now show thatΩ(f) is a Cantor set. That it is closed is a property of ω-limit sets. It is

perfect since x ∈ Ω(f) means that x ∈ ω(x) and hence fnk(x)→ x for some nk ↗∞ and

the fnk(x)’s are in ω(x), and are all distinct. To prove that Ω(f) is nowhere dense, first note

that the topological boundary ∂Ω(f) = Ω\Interior(Ω(f)) must satisfy ∂Ω(f) = Ω(f)

or ∂Ω(f) = ∅: ∂Ω(f) is closed, invariant under f and included in Ω(f) which is a minimal

set. But ∂Ω(f) = ∅ means Ω(f) = Interior(Ω(f)) is open, and because it is also closed,

it must be all of S1, which we have ruled out. The alternative is ∂Ω(f) = Ω(f), which

means Interior(Ω(f)) = ∅, which is what we wanted to prove. Exercise 13.6 walks the

reader through the proof that f is semi-conjugate to a rotation in this case. ��

Remark 13.5 A circle homeomorphism with an invariant Cantor set cannot be too smooth:

Denjoy (see Hasselblat & Katok (1995), Robinson (1994)) proved that if f is a C1 diffeo-

morphism of S1 with irrational rotation number and derivative of bounded variation, then

f has a dense orbit (i.e. Ω(f) = S1) and is therefore conjugated to a rotation of angle

ρ(F ). On the other hand, Denjoy did construct a C1 diffeomorphism with Ω(f) a Cantor

set. The idea is simple: take a rotation by irrational angle α. Cut the circle at some point x

and at all its iterate fk(x). Glue in at these cuts intervals Ik of length going to 0 as k →∞,

in such a way that the new space you obtain is again a circle. Extend the map f by linear

interpolation on the Ik. You get a circle homeomorphism with rotation number α. With
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some care, one can make this homeomorphism differentiable, but only up to a point (C1

with Hölder derivative). The complement of the Ik’s in the new circle is a Cantor set, which

is minimal for the extended map.

Exercise 13.6 In this exercise, we prove that all orientation preserving circle homeomor-
phism with irrational rotation number ω has the rotation of angle ω as a factor. This is
sometimes called Poincaré’s Classification Theorem (see Hasselblat & Katok (1995)).
a) Prove that x is a CO sequence with irrational ρ(x) iff

∀n,m, p ∈ ZZ, xn < xm + p⇐⇒ nρ(x) < mρ(x) + p

(Hint. Use Formula (13.8) for multiples of m and n). What is the proper corresponding
statement for CO sequences of rational rotation number?
b) Suppose the circle homeomorphism f has a dense orbit, which lifts to an orbit x of
some F . Build a monotone map h : IR→ IR by first defining it on x by:

xk +m �→ kρ(x) +m, ∀m, k ∈ ZZ.

Use a) to show that h is order preserving and show that its extension by continuity is
well defined, has continuous inverse and preserves orbits of F , and it commutes with the
translation T (Hint. density of the orbit in S1 means density of the set {xk +m}k.m∈ZZ in
IR). Hence in this case f is conjugate to a rotation.
c) Suppose now that Ω(f) 
= S1. Following the steps in b), take a dense orbit x in Ω(f)
and build a map h : Ω(F ) → IR as before (Ω(F ) denotes the lift of Ω(f) here). Check
that this map is onto, non decreasing and extend it to a map IR → IR by mapping each
the gap of the Cantor set to a single point.
d) Conclude that, in both cases, h provides a (semi)-conjugacy between f and a rotation
by ω.


