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THE AUBRY-MATHER THEOREM

8. Introduction
A. Motivation and Statement of the Theorem

The orbits of the twist map f, whose lift is the completely integrable shear map given by
Fo(z,y) = (z + y,y), possess the following four fundamental properties, some of which
we have yet to define:

(1) They lieon invariant circles which are graphs over the circle {y = 0}.

(2) They are ordered cyclically, like orbits of rotations on the circle.

(3) They come with al rotation numbersin (—oo, +00).

(4) They are action minimizers.

The KAM theorem (see the Introduction and 34.1) implies that, in the measure sense,
most of theseinvariant circleswill “ survive” asmall perturbationof f,,. Therotation numbers
of thesesurvivorshasto bevery irrational (diophantine). Onecannot hopefor all thesecircles
to survive under arbitrary perturbation of the map fj. In fact, it is known numerically that
that for k£ > 0.9716354, the standard map has no invariant circle (see Meiss(1992) ). Inthe
context of the Standard family, the Aubry-Mather theorem implies that, for each invariant
circle of fy, and for each A > 0, there exists an invariant set for f, which can be seen
as the remnant of the invariant circle. We will define the terminology (cyclically ordered,
minimizers, Denjoy sets etc...) in subsequent sections.
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Theorem 8.1 (Aubry-Mather) Let F : IR? — IR? be the lift of a C? twist map of the
cylinder with generating function S satisfying the following growth or coercion
condition:

(8.1) lim S(z,X) — 40

| X —z|—o00

Then F' has orbits of all rotation numbers in IR. Moreover, these orbits can be

chosen to have the following properties:

(1) They are cyclically ordered

(2) They lie on closed F-invariant sets, called Aubry-Mather sets that form graphs
over their projection on the circle {y = 0} and that are conjugated to closed
mvariant sets of lifts of circle homeomorphisms: either lifts of periodic orbits,
Denjoy Cantor sets (and optionally, orbits homoclinic to these sets) or the full
real line.

(8) They may be chosen to be action minimizers.

We will seethat an invariant Cantor sets must occur each timethereisnoinvariant circle
of agiven irrational rotation number. The existence of these invariant Cantor sets was the
striking novelty of thistheorem. For thisreason, theterm “Aubry-Mather sets” is sometimes
restricted to denote only the invariant Cantor sets of action minimizers.

Sketch of the Proof. We will find periodic orbits of all rational rotation numbers by mini-
mizing the periodic action W,,,, on the space X, ,, of m, n sequences (see Proposition 5.7
for definitions). Aubry’s Fundamental Lemmawill imply that W,,,,,-minimizers are “cycli-
cally ordered”, i.e. ordered like orbits of circle homeomorphisms. The cyclic order (CO)
property enables us to take limits of these periodic orbits (they will be in a compact set of
sequencesif their rotation numbers arein abounded set). Cyclic order a'so impliesthat the
rotation number of the limiting orbit exists and is the limit of the rotation numbers of the
periodic orbits.

One way in which this presentation differs from the excellent surveys of this subject
by Meiss (1992) or Hasselblat & Katok (1995) is the focus on the cyclic order property at

6 This is not quite the usual use of the term coercive. Usually, a numerical function ¢ on
a normed space is called coercive if lim|j,|— o0 ¢(u) = +00.
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the level of sequences (that are not necessarily realized by orbits). | found it a convenient
bridge between the study of the dynamics of circle homeomorphisms (which appearsin the
appendix to this chapter) and that of Aubry-Mather sets.

Aubry-Mather Theorem as Topological Stability. Thereareimportant notionsin thetheory
of dynamical systemsthat help to compare different systems. Werefer to Hasselblat & Katok
(1995) for more details. Suppose f : M — M andg : N — N aretwo C",r > 0 mapson
manifolds. We say that f and g are topologically conjugate if there is a homeomorphism
h : M — N suchthat h o f = g o h. Orbits of conjugate maps are in 1-1, continuous
correspondence (given by the map h). If the map A& is continuous but only surjective (and
not necessarily injective), we say that g is a factor of f and we call h a semiconjugacy.
Finaly, if f is a diffeomorphism and if it is a factor of any homeomorphisms in a C°
neighborhood of it, we say that f is topologically stable. In light of this terminology,
we can say that the Aubry Mather theorem is a “weak” stability statement: All maps in
a C'! neighborhood of the completely integrable map have the completely integrable map
restricted to irrational rotation invariant circles as afactor.

B. From the Annulus to the Cylinder

We precede our study by a Lemma, which implies that we can reduce our study to twist
maps of the cylinder.

Lemma 8.2 Let f be a C*,k > 2, twist map of a compact annulus A. Then f can
be extended to a C* twist map of the cylinder C, in such a way that it coincides
with the shear map (x,y) — (z + cy,y) outside a compact set. In particular, the
generating function of any lift of the extended map satisfies the growth condition

lim Sz, X)— +o0.

| X —z|—o00

To prove this lemma, one extends the generating function S from ¢(A) to IR? by
interpolating it to the quadratic §(X — x)? outside of some appropriate compact set. See
Forni & Mather (1994) or Moser (1986a) . As a corollary of this lemma, we obtain the
following version of the Aubry-Mather theorem:
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Theorem 8.3 (Aubry-Mather on the compact annulus) Let F' be the lift of a twist map
of the bounded annulus and suppose that the rotation numbers of the restriction of
F' to the lower and upper boundaries are p—, and p4 respectively. Then F' has orbits
of all rotation numbers in [p—_, p4]. These orbits are minimizers, recurrent, cycli-
cally ordered and they lie on compact invariant sets that form (uniformly) Lipschitz
graphs over their projections. These sets may either be periodic orbits, invariant
circles or invariant Cantor sets on which the map is semi-conjugate to lifts of circle

rotations.

9. Cyclically Ordered Sequences and Orbits

If amap G : IR — IR isthelift of acircle homeomorphism which preservesthe orientation,
itisnecessarily strictly increasing and must satisfy G(x+1) = G(z)+1. Hence, if {zy }rez
isan orbit of GG, it must satisfy:

(9.1) Ty <Tj+p= Tpy1 < Tjp1 +p, Vi j,pEZ.

We will say that a sequence {z}, }rez in IRZ is Cyclically Ordered, (or CO in short) if it
satisfies (9.1) . Clearly the CO sequences form a closed set for the topology of pointwise
convergence in R%: x(/) — x whenever =], — ;. for al k. Note that this topology is
the same as the product topology on the space of sequences. Using the partial order on
sequences (it comes with three degrees of strictness):

x<y<e {Vk,xr <yi}
r<y<e {Vk,xp <yr and x#y}
<y < {Vk,xp < yr}

we let the reader check that an equivalent definition of CO sequencesis:
(9.2) Vm,n € Z, Tmn® > & OF Ty, <

where

(Tm.n®)k = Tham + N
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We say that the orbit {(zx, yx ) }rez Of atwist map isa Cyclically Ordered orbit or CO
orbit if {x}}rez IS CO. These orbits come with various other namesin the literature: Well
Ordered (does not evoque the cyclic ordering), Monotone (is used in too many contexts),
Birkhoff (this order was apparently never mentioned by Birkhoff).(") Thefollowing lemma,
whose proof isin great part due to Poincaré (1885), is central to our use of CO sequences.

Lemma 9.1 Let {xk}rez be a CO sequence then p(x) = limyg_,oc xi/k exists and:
(9.3) |zp — o — kp(x)| < 1.

Moreover x — p(x) is a continuous function on CO sequences, with the topology of

pointwise convergence.

Define;
C1C)[a,b] = {CE € CO | ,0((13) S [CL, b]}

The following lemma shows that it is easy to find limits of C'O sequences, aslong as their
rotation numbers are bounded.

Lemma 9.2 The sets COj,p)/T1,0 and COpp N {x € R* | 20 € [0,1]} are compact

for the topology of pointwise convergence.

We give the proofs of both these lemmas in the appendix to this chapter. The fact, given
by these lemmas, that the rotation number behaves well under limits of CO-sequences is
one of the essential points in the theory of twist maps that does not generalize to higher
dimensional maps. to our knowledge, there is no dynamically natural definition of CO
sequencesin IR™, n > 2 which ensures the existence of rotation vectors which behave well
under limits. Note that there is, however, a natural generalization of CO sequences in the
context of maps Z¢ — IR, see Chapter 9.

Thereisavisual way to describe CO sequences, which we now cometo. A sequencex in
IRZ isafunction Z — IR. One can interpolate this function linearly and obtain a piecewise
affine function IR — IR that we denote by ¢ — z;. The graph of thisfunction is sometimes

" This is not an indictment of the authors who have used these terminologies: the author
of this book has himself used them all in various publications...
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called the Aubry diagram of the sequence. We say that two sequences « and w cross if
their corresponding Aubry diagrams cross. There are two types of crossing: at an integer
k,inwhich case (z;—1 — wk—1)(xg+1 — wr+1) < 0ora anoninteger t € (k,k+ 1),in
which case (z — wg)(zp+1 — wr+1) < 0. These inequalities can be taken as a definition
of crossings. Non—crossing of two sequences can be put in terms of the partial order on
sequence: x,y do not cross if and only if x < y . In particular a sequence x is CO if

and only if it has no crossing with any of its translates T, nx.

Xj+1
. Wi+1 Wi ,
Xk-1 Wi = X, _ Wj+1
- Wi-1 Xk+1 k+1

Fig. 9.0. Aubry diagrams of sequences and their crossings: in this example the sequences
« and w have crossings at the integer k and between the integers j and j + 1.

10. Minimizing Orbits

Throughout the rest of this chapter, we consider a lift F' of a given twist map f of the
cylinder, and its corresponding generating function S, action function W, periodic action
function W,,,,, and change of variable ¢. A sequence segment (zy, ..., z,,) iS (action)
minimizing if

W(Cl?k,...,l'm> S W(?/k?aym)

for any other sequence segment (yy, . - . , ¥, ) With Same endpoints: = = Yk, T, = Ym.-
Since minimizing segments are necessarily critical for 1/, they correspond to orbit segments
caled (action) minimizing orbit segment. A bi-infinite sequenceiscalled a (global action)
minimizer if any of its segments is minimizing. The orbit it correspondsto isa minimizing
orbit, or simply minimizer, when the context is clear. Note that the set of minimizersis
closed under the topology of pointwise limit (see Exercise 10.5). Finally aW,,,,,-minimizer
is aperiodic sequence in X, ,, that minimizesthe function W,,,,.
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A recurrent theme in the Calculus of Variation is that minimizers have regimented
crossings. In the case of geodesics on a Riemannian manifold, geodesics that (locally)
minimize length cannot have conjugate points, i.e. small variationswith fixed endpoints of
aminimizing geodesic only intersect that geodesic at the endpoints ( Milnor (1969) ), and
geodesics that minimize length globally cannot have self intersections (Mané (1991), page
102 ). We will see, in the present theory, that minimizers satisfy a non-crossing condition,
which implies that W,,,,,—minimizers (and more generally, recurrent minimizers) are CO.

Lemma 10.1 (crossing) Suppose that (x —w)(X — W) < 0. Then:
S(z, X))+ S(w,W) =Sz, W) - S(w, X) <0,

and equality occurs iff (x —w)(X — W) =0

Proof. We can write:
1
Sz, X)—S(x,W) = / S (z, X)) (X — W)ds,
0
where X, = (1 — s)W + sX. Applying the same processto h(x) = S(x, X) — S(z, W),
we get:
S(z, X))+ S(w, W) =Sz, W) - S(w,X) =h(zx) — h(w) =

/ / 012820, X5 ) (X — W) (z — w)dsdr = \(X — W)(z — w)

for somestrictly negative \, by the positive twist conditionandfor x,, = (1 —r)w+rz. O
The following is a watered down version of the Fundamental Lemmain Aubry & Le
Daeron (1983). We follow Meiss (1992) :

Lemma 10.2 (Aubry’s Fundamental Lemma) Two distinct minimizers cross at most

once.

Proof. Supposethat x and w are two distinct minimizers who cross twice. We perform
some surgery on finite segments of = and w to get two new sequences =’ and w’ with at least
one of them of lesser action, contradicting minimality. There are three cases to consider: (i)
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both crossings are at non integers, (ii) one crossing is at an integer, (iii) both crossings are
at integers.

Xi-1= X'iq o X'j+1= Wi+1
Wi = X=X ;=W

-

-y Xi+1= W'j+1
Wi-1= Wi 4

Fig. 10.2. A crossing of Case (ii)

Case (i):Letty € (i —1,4) and to € (j,7 + 1) bethe crossing times. Define:

k™ =z, otherwise k™) w, otherwise
Letting W denote the action over an interval [N, M| containing [j — 1,k + 1], we easily
compute that:

Wz + W (w)-W(x) - W(w) =
S(xi—1,w;) + S(wi—1,z;) — S(wi—1, x;) — S(wi—1,w;)
+S(xj, i) + S(wy, wjp1) — S(x5, 2511) — S(wj, witr).

The Crossing Lemma 10.1 shows that this difference of actions is negative, contradicting
the minimality of « and w.

Case (ii): In this case, only one crossing will contribute negatively to the difference of
action of new and old sequences. We still get a contradiction.

Case (i) Let i — 1 and j + 1 be the crossing times of « and w, and construct =’ and
w’ as before. In this case the difference in action between old and new segments is null.
The sequences =/, w’ must be minimizing, and hence correspond to orbits. But we have
Tig = w, 4, m_1 = w, ;.Hencethepointsy~!(z; o, x;_1) and v H(w!_ 4, wl ;)
of IR? are the same and thus generate the same orbit under F. This in turn implies that
x = w, acontradiction to our assumption. O
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Corollary 10.3 W,,,,,-minimizing sequences are CO and their set is completely ordered

for the partial order on sequences.

Proof. Sincethe proof of Aubry’s Lemma deals with finite segments of sequences only,
it also applies to show that two W,,,,,-minimizers in X, ,, may not cross twice within
one period n. But two m, n-periodic sequencesthat cross once must necessarily crosstwice
within one period. Hence two W,,,,,-minimizers cannot cross at al. It is easy to check that
Wy iSinvariant under 7; ; for al integersi, j. Thus, if x isaW,,,,, minimizer, 7; jx isaso
aW,,,,-minimizer. Since they do not cross, one must have either ¢ < 7; ;xz or 7; ;& < =,
fordli,j € Z,i.e. isCO. O
We end this section by a proposition which we will need in Chapter 3.

Proposition 10.4 Any W,,,-minimizer is a minimaizer.

Proof. We will show that if x isa W,,,-minimizer, it is aso a Wy,,r, minimizer for
any k. Thisimpliesthat « isaminimizer on segments of arbitrary length: if  isa W,,kn
minimizer, any segment of x of length lessthan kn isminimizing. Hence x isaminimizer.
Now, take a Wi, k., -minimizer w. If w isnot m, n-periodic, then w and 7,,, ,,w aredistinct.
By Corollary 10.3, they cannot cross. Suppose, say, thet 7,,, ,w > w. Since 7,,, ,, trivialy
preservesthe (strict) order on sequences, we must also have Tjjww > w, acontradiction to
the fact that w is km, kn- periodic. Hence w isin X,,,, and its action over intervals of any
length multiple of n cannot be lessthan that of . Hence x isalso aWy,,,i., Mminimizer. 0O

Exercise 10.5 Show that the set of minimizers (either sequences or orbits) is closed under
pointwise limits.

Exercise 10.6 a) Show that the set of recurrent minimizers of rotation number w is com-
pletely ordered. (Hint. Mimic the proof of Proposition 10.4: if an appropriate inequality is
not satisfied, there must be a crossing. By recurrence, there is another one, a contradiction
to Aubry’s Lemma).

b) Show that a minimizer corresponding to a recurrent (not necessarily periodic) orbit of
the twist map is CO.

(Remember that the orbit zj of a dynamical system is called recurrent if z is the limit of
a subsequence z,. Equivalently, zo is in its own w-limit set).
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11. CO Orbits of All Rotation Numbers

A. Existence of CO Periodic Orbits

We prove that the set of W,,,,,-minimizersis not empty. By Corollary 10.3 thiswill show
the existence of C'O orbits of all rational rotation numbers.

Proposition 11.1 Let I be the lift of a twist map with a generating function which
satisfies the coercion condition lim|x_z| oo S(7,X) — +o0o. Then, for all m,n,

Winn has a minimum on X, ..

Proof. Note that, by periodicity of S, the ranges of W,,,, on X,, ,, and on its subset
Xm.nN{x1 €0, 1]} arethe same: we can trandlate any sequence of X, ,, by aninteger to
bring it to that subset without changing itsaction. Now, if S satisfiesthe coercion condition,
then for x € X, ,, N {z1 € [0,1]}, lim) g~ 00 Winn(x) — 400! if ||| — oo and ;
remains bounded, at least one |z, — x;_1| must tend to +oc. In particular, for any large
enough K € IR, W, ! (—o0, K] is bounded and not empty. Since, by continuity, this set is
also closed, it must be compact. Thus W,,,,, attains its minimum on that set. O

An interesting sufficient condition for S to satisfy the coercion condition is that the
“twist” of the map be uniformly bounded below (see MacKay & al. (1989)):

Proposition 11.2 Let the twist condition for the lift of a twist map F be uniform:

0X(x,y)

By >a>0 VY(z,y)elR?

Then there is a constant o, and two strictly positive constants 3 and v such that :

S(x,X) > a—BIX -zl +v|X —zf.

Proof. We can write:
1
S(z,X)=S(x,x) +/ DS (x, X)) (X — x)ds,
0

where X; = (1 — s)z 4 sX. Applying the same process to d- S, we get:
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Sz, X) = S(x,x) / 025(Xs, Xs)(X — x)ds

/ds/ 0125(X,, X ) (X — 2)2dr

We can conclude the proof of the lemma by taking

O‘_?gﬁs@ x), ﬁ:gle%|825(x,x)|

(o, 8 exist by periodicity of S) and v = a/2. O

B. Existence of CO Orbits of Irrational Rotation Numbers

Theexistenceof CO orbitsof irrational rotation numbersisasimpleconsequence of theexis-
tence of CO periodic orbits: pick asequencex %) of W,,,, ., —minimizers, withmg, /nj, — w
ask — oo. By using appropriate trand ations of thetype 7,,, o on*) (which neither change
their rotation numbers, nor thefact that they areminimizers) wecanassumethat :1;( ) e € [0,1].
The sequence my, /ny, is bounded and hence, by Corollary 10.3 the sequences (%) arein
COpqp N{x € IRZ | zo € [0,1]} for somea, b € IR. Lemma 9.2 guarantees the existence
of a converging subsequence in COy, 5 and Lemma 9.1 shows that the limit of this sub-
sequence has rotation number w. Finally, note that the periods n; go to infinity as k goes
to infinity. In particular, any finite ssgment of alimit = of (*) is the limit of minimizing
segments, hence minimizing itself (Exercise 10.5). O

12. Aubry-Mather Sets

We have proven Part (1) and (3) of the Aubry-Mather theorem: existence of cyclically
ordered, minimizing orbits of al rotation numbers. We now prove Part (2): the cyclicaly
ordered orbits that we found in the previous section lie on Aubry-Mather sets, which we
describe in this section.

We say that aset M inIR? is F-ordered if, for z, 2’ in M,

7(2) < w(2) = m(F(2)) < n(F(z")),

where 7 is the x-projection. A set is F'-ordered invariant if it is F-ordered and invariant
under both £ and F—!. On such a set, the sequences x, ' of z—coordinates of z and 2’
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must satisfy « < «’. An example of F-ordered invariant set is the set of pointsin a CO
orbit and all their integer tranglates. In fact, this can be used to give an alternative definition
of CO orbits: an orbit is CO if and only if its points form an F-ordered invariant set. Note
that an invariant circle which is a graph is F-ordered invariant (we will see in Chapter 6
that all invariant circles are graphs). We now want to explore the properties of F-ordered
invariant sets. Crucial to the properties of these sets is the following ratchet phenomenon
(I owe this terminology to G.R. Hall), which is a somewhat quantitative expression of the
twist condition. This phenomenon, or condition is best described by the following picture:

Z
@v :

Fig. 12.0. The ratchet phenomenon for the lift of a positive twist map F': there are two
cones (shaded in this picture) ©, and @}, in IR? centered around the y and z-axes respec-
tively, such that, if z, 2’ are two points of IR? with 2’ € z + ©,,, then F(2') € F(z) + O},.
More precisely, for a positive twist map 2z’ € 2+ 6 = F(z') € F(z) + 6, , where the half
cones @Z‘, ©; have the obvious meaning. The same holds for the half cones ©, and O, .
If g is negative twist (eg. F~'), then the signs are reversed. The same cones can be used
for F~! as for F.

Lemma (Ratchet) 12.1 Let F' be the lift of a twist map satisfying %—)y( >a >0 1in
some region. Then, in that region, F satisfies the ratchet phenomenon for some

cones 6,0, whose angles only depend on a.
Proof. SeeExercise12.9.

Proposition 12.2 The closure of an F—ordered invariant set is F—ordered and in-

variant.

Proof. Theinvarianceisby continuity of F'. Let M be an F-ordered invariant set. We let
thereader provethat the uniformtwist condition %—)y( > a > (isautomatically satisfied onan
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F-ordered invariant set (essentially, such a set is necessarily bounded in the y direction, see
Exercise 12.9). Supposethat, intheclosure M of M thereare z, 2’ in M, with7(z) < 7(2’)
but 7(F(z)) = n(F(2")) (the worst case scenario). By the ratchet phenomenon for 1,
F(z) mustbeabove F'(2') and w(F?(2")) < m(F?(z)), i.e. thex orbitsof z and 2’ switched
order. Thisisimpossible sincein M the (strict) order is preserved by F'.

Proposition 12.3 If M is an F-ordered invariant set, then it is a Lipschitz graph
over its projection: there exists a constant K depending only on F' such that, if (x,y)

and (2',y") are two points of M, then:

Y —yl < K[z’ — 2

with K only depending on the twist constant a = inf %—)y{.

Note that a, and hence K could also be chosen the same for all F-ordered setsin a
compact region.

Proof. The proof of Lemma 12.2 shows that if M is F-ordered, we cannot have z, 2’
in M and 7(z) = w(2’) unless z = z’. Hence 7 is injective on M, and M is a graph.
To show that M forms a Lipschitz graph over its projection, let z and z’ be two points of
M and x and =’ the corresponding sequences of x-coordinates of their orbits. Assuming
7(z) < 7(2), we must have z < «’. If 2/ € 2 + O, the ratchet phenomenon implies
that F~1(z') € F~1(z) + ©;, i.e. z’_; > x_y, acontradiction. Likewise 2’ cannot bein
the cone z + @, and hence it must be in the cone complementary to ©,, a z. This cone
conditioniseasily transcribed into auniform Lipschitz condition |y’ — y| < K|z’ —z|. O

Remark 12.4 Applied to the special case of invariant circles, Proposition 12.3 shows that
any invariant circlefor atwist map whichisagraphisLipschitz. Thisisatheorem originaly
dueto Birkhoff, who also proved (see Chapter 6) that all non-homotopically trivial invariant
circlesfor twist maps must be graphs.

Lemma 12.5 All points in an F-ordered set have the same rotation number.
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Proof. Thisis a consequence of the ssimple fact (Lemma 13.3 in the appendix) that if
x < x’ aretwo CO sequences, they must have the same rotation number. O

Definition 12.6 An Aubry-Mather set M for thelift F' of atwist map f of the cylinder is
aclosed, F-ordered invariant set which is also invariant under the integer trandation 7'.

Note that some authors call Aubry-Mather sets the projections of the above sets to the
annulus. Exercise 12.9 shows that these projections are necessarily compact. Taking the
closure of al the integer trandlates of the points in the CO orbits found in the previous
section, we immediately get:

Theorem 12.7 Let F be the lift of a twist map of the cylinder. Then F has Aubry-
Mather sets of all rotation numbers in IR. Any CO orbit is in an Aubry-Mather

set.
Note that this theorem gives part (b) of the Aubry-Mather theorem.

Theorem 12.8 (Properties of Aubry-Mather sets) Let M be an Aubry-Mather set for

a lift F' of a twist map of the cylinder.

(a) M forms a graph over its projection w(M), which is Lipschitz with Lipschitz
constant only depending on the twist constant a = inf %—ij .

(b) All the orbits in M are cyclically ordered and they all have the same rotation
number, which is called the rotation number of M.

(c) The projection w(M) is a closed invariant set for the lift of a circle homeomor-

phism, and hence F restricted to M is conjugated to the lift of a circle homeomor-

phism via 7.

Proof of Theorem 12.8. We have shown in Lemmas 12.5 and 12.6 that (a) and (b) are
in fact properties of F-ordered invariant sets. As for Property (c), since 7 is one to one
on M, F induces a continuous (Lipschitz, in fact) increasing map G on (M ), defined by
G(m(z)) = n(F(z). Since M and thus 7(M) are invariant under integer trandation, we
have G(x + 1) = G(z) + 1. Theset w(M) isclosed and invariant under integer translation
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since M is. If 7(M) = IR, then G is thelift of a circle homeomorphism. If 7(M) # R,
then its complement is made of open intervals. Extend G by linear interpolation on each
interval in the complement of 7(M). Since G isincreasing on 7(M), its extension to IR
(cal it G) isincreasing as well, continuous and G(x + 1) = G(z) + 1, hence the lift of a
circlehomeomorphism. By construction G(7(z)) = n(F'(z)),and W‘M isacontinuous, 1-1
map on the compact set M, hence a homeomorphism M — 7w (M ). Thus 7 is a conjugacy
between I on M and G on (M), whichisaclosed andinvariant set under GandG—1. O

Recapitulation on the Dynamics of Aubry-Mather Sets. If GG isthelift of acircle homeo-
morphism constructed in the proof of Theorem 12.7, the possible dynamicsfor invariant sets
of circle maps described in the appendix become, under the conjugacy, possible dynamics
on Aubry-Mather sets M for F. Hence an Aubry-Mather set M is either:

(i) anordered collection of periodic orbitswith (possibly) heteroclinic orbitsjoining them,

or

(i) thelift of an f-invariant circle, or
(iii) an F-invariant Cantor set with (possibly) homoclinic orbitsin its gaps.

The rotation number of M is necessarily rational in Case (i), and necessarily irrational
in Case (iii). In Case (ii), M may either have a rational or irrational rotation number, as
the example of the shear map shows. However, maps with rational invariant circles are
non generic. Indeed, as a circle map, the restriction of the twist map to the invariant circle
must have a periodic orbit. For generic twist maps, periodic orbits must be hyperbolic and
the circle must be made of stable and unstable manifolds of such orbits, that coincide. But
generically, such manifoldsintersect transversally. See Herman (1983) and Robinson (1970)
for more details. Asfor homoclinic and heteroclinic orbitsasin (i) and (iii), they have been
shownto exist each timetherearenoinvariant circlesof the corresponding rotation numbers,
see Hasselblat & Katok (1995) , Mather (1986) .

The feature that is striking in the Aubry-Mather theorem is the possible occurrence of
Aubry-Mather sets as in (iii). The F-invariant Cantor sets have been caled Cantori by
Percival (1979)who constructed them for the discontinuous sawtooth map (a standard map
with sawtooth shaped potential). Thistype of dynamics does occur intwist map, sinceit can
be shown that many maps have no invariant circles, and hence the irrational Aubry-Mather
sets must be of type (iii), i.e. contain Cantori.
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Although one can construct many Aubry-Mather sets that are not made of minimizers
(Mather (1985)), the name “Aubry Mather set” is often reserved to the action minimizing
Cantori M, as defined below:

Proposition 12.9 For each irrational rotation number w there is a unique Cantorus
M, made of recurrent minimizing orbits of rotation number w. The closure of any

CO minimizing orbit of rotation number w is contained in M,,.

Proof. A COminimizing orbit formsan F-ordered set, contained in an Aubry-Mather set,
and hence conjugated to an orbit of a circle homeomorphism. The closure of the irrational
CO minimizing orbit is therefore in a Cantorus, conjugated to the w—limit set of the circle
homeomorphism. As limit of minimizers, this Cantorus is made up of minimizers. We now
prove that this Cantorus is unique: suppose there are two of them. Exercise 10.6 implies
that the (digoint) union of these two Cantori forms an F'—ordered set, hence conjugated to
a closed invariant set of a circle homeomorphism. Each Cantorus is the w-limit set of its
points. Thisis a contradiction to the uniqueness of w limit sets of circle homeomorphisms
proven in Theorem 13.4. O

Exercise 12.9 a) Prove the Ratchet Lemma 12.1.

b) Prove that if F' is an F-ordered invariant set, then the projection proj(M) of M to
the cylinder is compact, f-invariant. Deduce from this that M satisfies the uniform twist
condition 0X/0y > a > 0. [Hint. Use Lemma 9.2].

Exercise 12.10 Show that a twist map f restricted to a Cantorus (irrational Aubry-Mather
set) is semiconjugate to a rotation of the same rotation number.

13. Appendix: Cyclically Ordered Sequences and Circle Maps

In this section, we prove Lemma 9.1, and Lemma 9.2. We then recover important facts
about circle homeomorphisms and their invariant sets using the language of CO sequences.
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A. Proofs of Lemmas 9.1 and 9.2

Werecall the statements of each lemmabefore provingit. Part of the proof below isclassical,
due to Poincaré in his study of circle homeomorphisms.

Lemma 9.1 Let {xk}rez be a CO sequence then p(x) = limy oo xx/k exists and:
(13.1) |z —zo — kp(x)| < 1.

Moreover x — p(x) is a continuous function on CO sequences, when the set of

sequences has been given the topology of pointwise convergence.

Proof . Letx beaCO sequence. Wefirst prove that the sequence { *»—*¢ },,cz is Cauchy

asn — +oo. Wedo thecasen — +oo first.
Givenn € IN, let a,, be the integer such that:

(13.2) ro+ o < xp < T+ 0y + 1.
We prove by induction that
(13.3) ro + ko, < xpn < X9 + ko, + k, Vk € IN.

Indeed, step 1 in the induction is just (13.2) , and if we assume step &, i.e. (13.3) then,
since x is CO, we get

Tn + kan < Tpgp1yn < Tn + kap + k.

Using (13.2) thisgives zo + (k + 1), < Z(pq1)n < o + (k + 1)ay, + (k + 1), whichis
the step £ + 1 and finishes the induction.
Dividing (13.3) by k£ we get

(13.4) a, < T 7F0 1.

- k
Sincethisistruefor al £ > 0, we must have, for all n # 0, the two equivalent inequalities

Lkn — X0 Tn — X0
13.5 —
(13.5) ’ N

Thn — X0 Ty — To 1

<l&s

kn n = In|’

Writing z,, = #=—*¢, and assuming m > 0,n > 0, the triangular inequality gives:
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(13.6) 120 — 2m| < |20 — Zmn| + [2mn — 2m| < — +

S|

1
E7
and hence {z, }cn, isa Cauchy sequence whose limit we call p(x).
Let m — oo in (13.6), and multiply by n:

(13.7) |z, — 20 — np(x)| < 1.

To see how the case n — —oo follows, note that in al the above we could have replaced
xo by an arbitrary x,,,, m € Z and obtained:

(13.8) |Zy, — 2 — (n—m)p(x)] <1 Vm,n € Z.

We let the reader check that thislast inequality impliesthat lim,,—, o 2, = p(x).

The continuity of p isalso a consequence of (13.7). Indeed, suppose the CO sequences
x(7) tend to  pointwise as j — oo. Constructing sequences z) as above, and denoting
p(x")) = w;, (13.7) yields

: 1
(13.9) ) —wil < 7
Since zU) — z, forall kand e > 0,
j j i i 2
wj —wil <lwj =501+ 15 =27 417 —wil < 7+
whenever i, j are big enough. Hence {wy, } ez isaCauchy sequence, whose limit we denote

by w. Letting j — oo in (13.9) yidldsw = p(z). O

Lemma 13.1 The sets COyqp) /71,0 and COpp N{x € RZ | 29 € [0,1]} are compact

for the topology of pointwise convergence.

Proof. We have already remarked that, trivially, CO is closed for pointwise convergence,
i.e. the product topology on sequences. Lemma 9.1impliesthat CO, ;) N {x | 2o € [0,1]}
isaclosed subset of the set:

{ZU € IR‘Z ’ Tk = To + kw + Yk, (xo,w,y) S [07 1] X [CL, b] X [_17 1]Z7With Yo = 0}

which iscompact for the product topology, by Tychonov’stheorem. We let the reader derive
asimilar proof for CO(, 4)/71,0- O
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B. Dynamics of Circle Homeomorphisms

Rotation Numbers and Circle Homeomorphisms. The orbits of an orientation preserving
circle homeomorphism are by definition Cyclically Ordered. From Lemma 9.1, we can
deduce the following theorem, due to Poincaré (1885):

Theorem 13.2 All the orbits of the lift F' of an orientation preserving circle homeo-
morphism f have the same rotation number, denoted by p(F'). The rotation number
p 1s a continuous function of F, where the set of lifts of homeomorphisms of the

circle is given the C° topology.
Proof. We start by asimple but useful lemma.
Lemma 13.3 If two CO sequences x,x’ satisfy x < &’ then p(x) = p(x').

Proof. The rotation numbers are the respective asymptotic slopes of the Aubry diagram
of  and «’. Thus, if p(x) # p(x’), the Aubry diagrams of x and =’ must cross. In this
case, there must be a ko and a k; such that xy, > zj and zy, < ;. This contradicts
x <. O

Continuing with the proof of Theorem 13.2, since F' is increasing, two CO sequences
x and w corresponding to distinct orbits of F' must satisfy < w or w < x. From the
previouslemmazx and w have samerotation number. Finaly, if f,, — f inthe C topology,
thenthe f,, orbit of apoint = (aCO sequence) tends pointwiseto the f orbit of x. By Lemma

9.1, lim p(f,) = lim p({ £ () }rez) = p({/*(2) }nez) = p(f). 0

Dynamical classification of circle homeomorphisms. We now review the classification
of circle homeomorphisms by Poincaré (1885). Recall some general terminology from
dynamical systems. The Omega limit set w(x) of apoint x under adynamical system f
isthe set of limit points of the forward orbit, i.e. the set of limit points of all subsequences
{1, } wherez), = f*(z) and k; — +o0 asj — +oo. Likewise, the Alpha limit set a(x)
is the set of limit points of the backward orbit. A minimal invariant set for a dynamical
systemisaclosed, (forward and backward) invariant set which contains no closed invariant
proper subset. A heteroclinic orbit between two invariant sets A and B is the orbit of a
point = such that a(z) C A and w(x) C B. Theterm homoclinic is used when A = B.
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Theorem 13.4 Let f be a circle homeomorphism and F' a lift of f. If p(F) is rational,
then, for any © € 8', w(z) and a(x) are periodic orbits. The orbit of = is either
periodic (in which case v € w(x) = «a(x)) or it is heteroclinic between a(x) and
w(z).

If p(F) is irrational, then, for any .2’ € $*, a(x) = a(z) = w(z) = w(a'). Call
this set £2(f). Then $2(f) is either the full circle, or a minimal invariant set which
is a Cantor set. In the first case any orbit is dense in the circle, and f is conjugated
to a rotation by p(F). In the second case, a point x of S* is either in 2(f) and
recurrent, or it is homoclinic to 2(f), a “gap orbit”, and f is semi-conjugate to a

rotation by p(F).

We remind the reader that a Cantor set K isaclosed, perfect, and totally disconnected
topological set. Perfect means that each point in K is the limit of some (not eventually
constant) sequence in K, and totally disconnected means that, given any two points a and
bin K, onecanfind digoint closed sets A and Bwitha € A,b € Band AUB = K. Inthe
real line or the circle, aclosed set istotally disconnected if and only if it is nowhere dense.
A set X is nowhere dense if Interior(Closure(X)) = (.

Proof of Theorem 13.4.

Rational rotation number. Suppose p(F) = m/n. Then F™(-) —m must have a fixed
point, otherwise for all x € IR, F"(z) — = # m and we can assume F"(z) — x > m. By
compactness of $*, p(F) > m/n, acontradiction. Hence F' has an m, n-periodic orbit. By
continuity, on any interval I where F — Id — m is non zero, it must stay of a constant
sign. This sign describes the direction of progress of points inside the orbit of I towards
its endpoints: they must be heteroclinic to the endpoint orbits. Conversely, if F' has an
m, n-periodic orbit, its rotation number and thus that of F' must be m /n.

Irrational rotation number. Suppose p(F) isirrational. Let z € $' and denote by = =
{xy }rez its orbit under f (with 2 = ). Suppose w(z) = $*. We show that w(z’) = $'
for any other 2’ € $'. Suppose not, and there is an interval (a,b) which contains no
z, = f*(2). But (a,b) must contain some [x,,, z,,] by density of x. Again by density,
the intervals f~*("=")[z,,, x,,] must cover $* and hence f* (=™ z’ € (a, b) for somei, a
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contradiction. We guide the reader through the proof that f is conjugated to a rotation by
p(f) in Exercise 13.6.

Suppose w(z) # $'. Then, since w(z) is closed, its complement is the union of open
intervals. Take another point z’. We want to show that w(z’) = w(x). We will prove that
w(z') C w(z): by symmetry w(xz) C w(z’). Thisisobviousif 2’ € w(z). Suppose not.
Then 2’ isinan openinterval I inthe complement of w(x) whoseendpointsareinw(x). The
orbit of 7 ismade of open intervalsin the complement of w(z) whose endpointsare orbitsin
w(x). Since thereis no periodic orbit, these intervals are digoint: by the intermediate value
theorem f*(I) c I would imply the existence of a fixed point for f*, hence a periodic
orbit. The length of these intervals must tend toward O under iteration. Thus the orbit of
«’ approaches the endpoint orbit of I arbitrarily i.e. the orbit of x’ is asymptotic to w(x).
Hence w(x’) C w(x). In particular w(z) = 2(f) isaminima invariant set: any closed
invariant subset of 2( f) must contain the w-limit set of any of its point, hence £2( f) itself.

We now show that £2( f) isaCantor set. That itisclosed isaproperty of w-limit sets. Itis
perfectsincex € 2(f) meansthat = € w(x) and hence f* (x) — x for somen;, , oo and
the f™* (z)'sareinw(x), and areall distinct. To provethat (2( f) isnowhere dense, first note
that the topological boundary 02(f) = 2\Interior({2(f)) must satisfy 902(f) = 2(f)
or 992(f) = 0: 002(f) isclosed, invariant under f and includedin 2( f) whichisaminimal
set. But 902(f) = () means 2(f) = Interior(£2(f)) isopen, and becauseit is aso closed,
it must be all of $*, which we have ruled out. The alternative is 952(f) = £2(f), which
means Interior(2(f)) = (), which is what we wanted to prove. Exercise 13.6 walks the
reader through the proof that f is semi-conjugate to arotation in this case. O

Remark 13.5 A circle homeomorphism with an invariant Cantor set cannot be too smooth:
Denjoy (see Hasselblat & Katok (1995), Robinson (1994)) proved that if f isaC* diffeo-
morphism of $* with irrational rotation number and derivative of bounded variation, then
f has a dense orbit (i.e. £2(f) = $') and is therefore conjugated to a rotation of angle
p(F). On the other hand, Denjoy did construct a C'* diffeomorphism with 2( ) a Cantor
set. Theideais simple: take arotation by irrational angle «.. Cut the circle at some point z
and at al itsiterate ¥ (). Gluein at these cutsintervals I, of length goingto O ask — oo,
in such away that the new space you obtain is again acircle. Extend the map f by linear
interpolation on the ;.. You get a circle homeomorphism with rotation number «.. With
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some care, one can make this homeomorphism differentiable, but only up to a point (C*!
with Holder derivative). The complement of the I,’sin the new circleisaCantor set, which
isminimal for the extended map.

Exercise 13.6 In this exercise, we prove that all orientation preserving circle homeomor-
phism with irrational rotation number w has the rotation of angle w as a factor. This is
sometimes called Poincaré’s Classification Theorem (see Hasselblat & Katok (1995)).

a) Prove that z is a CO sequence with irrational p(x) iff

Vn,m,p € Z, xn < Tm+p<= np(z)<mp(x)+p

(Hint. Use Formula (13.8) for multiples of m and n). What is the proper corresponding
statement for CO sequences of rational rotation number?

b) Suppose the circle homeomorphism f has a dense orbit, which lifts to an orbit x of
some F'. Build a monotone map h : IR — IR by first defining it on = by:

xr +m— kp(x) +m, VYm, ke Z.

Use a) to show that h is order preserving and show that its extension by continuity is
well defined, has continuous inverse and preserves orbits of F', and it commutes with the
translation T (Hint. density of the orbit in $' means density of the set {zr + m}k.mez in
IR). Hence in this case f is conjugate to a rotation.

c) Suppose now that £2(f) # $'. Following the steps in b), take a dense orbit = in £2(f)
and build a map h : 2(F) — IR as before (£2(F') denotes the lift of £2(f) here). Check
that this map is onto, non decreasing and extend it to a map IR — IR by mapping each
the gap of the Cantor set to a single point.

d) Conclude that, in both cases, h provides a (semi)-conjugacy between f and a rotation
by w.



