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GENERATING PHASES AND
SYMPLECTIC TOPOLOGY

In Appendix 1, Section 58, we remark that the differential of a functionW : M → T ∗M

gives rise to the Lagrangian submanifold dW (M) of T ∗M . As a generalization of this fact,

one can construct Lagrangian submanifolds of T ∗M as symplectic reductions of graphs

of differentials of generating phases, which are functions on vector bundles over M .

Generating phases are the common geometric framework to the different discrete vari-

ational methods in Hamiltonian systems, including the method developed in this book.

Applications of generating phases range from the search for periodic orbits to the Maslov

index, symplectic capacities and singularities theory. Generating phases are a viable alter-

native to the use of heavy functional analytic variational methods in symplectic topology.

This chapter intends to be a basic introduction to generating phases. We first present

Chaperon’s method, which he used to give an alternate proof of the theorem of Conley &

Zehnder (1983). This theorem, which solved a conjecture by Arnold on the minimum number

of periodic points of Hamiltonian maps of T2n, is considered by many as the starting point of

symplectic topology, in the sense that it implies that the C0 closure of the set of symplectic

diffeomorphisms is distinct from the set of volume preserving diffeomorphisms. We then

survey the abstract structure of generating phase, highlighting the common geometric frame

for the symplectic twist maps method and that of Chaperon (as well as others).
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52. Chaperon’s Method And The Theorem Of Conley-Zehnder

Chaperon (1984) introduced a method “du type géodesiques brisées” for finding periodic

orbits of Hamiltonians which did not make use of a decomposition by symplectic twist

maps. This method has been the basis of later work by eg. Laudenbach & Sikorav (1985),

Sikorav (1986), and Viterbo ( 1992).

A. A New Action Function

Until now, we have studied exact symplectic maps that come equipped with a generating

function due to the twist condition. The concept of generating function is more general than

this, however: we now show how an exact symplectic map of IR2n which is uniformly C1

close to Id may have another kind of generating function. The small time t map of a large

class of Hamiltonians satisfy this condition. Hence, the time one map of these Hamiltonians

can be decomposed into maps that possess this kind of generating function, leading to a

different variational setting for periodic orbits than the one we have used so far. Let

F : IR2n → IR2n

(q,p)→ (Q,P )

be an exact symplectic diffeomorphism:

(52.1) P dQ− pdq = F ∗pdq − pdq = dS,

for some S : IR2n → IR (remember that all symplectic diffeomorphism of IR2n are in fact

exact symplectic. We stress exact symplectic here in view of our later generalization to

T ∗M ). The following simple lemma is crucial here.

Lemma 52.1 Let F : IR2n → IR2n be an exact symplectic diffeomorphism. Then, if

‖F − Id‖C1 is small enough, the map

φ : (q,p)→ (Q,p)

is a diffeomorphism of IR2n .

Proof . Q(q,p) is (uniformly) C1 close to q and thus φ is (uniformly) C1 close to Id,

hence a diffeomorphism. ��
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Treating φ as a change of coordinates, we can view S as a function of the variablesQ,p.

We now show how, in a way that is slightly different from the twist map case, F can be

recovered from S. We define

S̃(Q,p) = pq + S(Q,p), where q = q(Q,p);

then

(52.2) dS̃ = pdq + qdp+ P dQ− pdq = P dQ+ qdp

and thus S̃ generates F , in the sense that:

(52.3)
P =

∂S̃

∂Q
(Q,p)

q =
∂S̃

∂p
(Q,p).

Remark 52.2 Note that Id is not a symplectic twist map and thus it cannot be given a

generating function in the twist map sense. One of the advantages of the present approach

is that Id does have a generating function, which is

S̃(Q,p) = pQ.

As an illustration, fixed points of F are given by the equations:

p =
∂S̃

∂Q
= P ,

Q =
∂S̃

∂p
= q,

which are equivalent to the following equation:

d(S̃ − pQ) = (P − p)dQ+ (q −Q)dp = 0.

Hence we have reduced the problem of finding fixed points of an exact symplectic diffeo-

morphism C1 close to Id on IR2n to the one of finding critical points for a real valued

function. We now apply this method to give Hamiltonian maps of T2n a finite dimensional

variational context. It can also be used for time one maps of Hamiltonians with compact
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support in IR2n, or Hamiltonian maps that are C0 close to Id in a compact symplectic

manifold.

LetH : IR2n× IR be a C2 function with variables (q,p, t). AssumeH is ZZ2n periodic

in the variables (q,p) (i.e., H is a function on T2n × IR). As in Appendix 1, we denote

by htt0(q,p) = (q(t),p(t)) the solution of Hamilton’s equations with initial conditions

q(t0) = q, p(t0) = p. By assumption, htt0 can be seen as a Hamiltonian map on T2n.

We know that htt0 is exact symplectic (see Theorem 59.7). Furthermore, by compactness

of T2n, when |t− t0| is small, htt0 is C1 close to Id (the Hamiltonian vector field of a

C2 function is C1, hence so is its flow). For |t− t0| small enough, we can apply Lemma

52.1 to get a generating function for htt0 . To make this argument global, we decompose h1

in smaller time maps:

(52.4) h1 = h1
N−1
N

◦ h
N−1
N
N−2
N

◦ . . . ◦ h
2
N
1
N

◦ h
1
N
0

and thus, for a large enough N , h1 can be decomposed into N maps that satisfy Lemma

52.1. [The farther h1 is from Id, the bigger N must be]. We can then apply the following

proposition to h1:

Proposition 52.3 Let F = FN ◦ . . . ◦F1 where each Fk is exact symplectic in T ∗IRn,

C1 close to Id, and has generating function S̃k(Q,p). The fixed points of F are in

one to one correspondence with the critical points of :

W̃ (Q1,p1, . . . ,QN ,pN ) =
N∑
k=1

S̃k(Qk,pk)− pkQk−1

where we set Q0 = QN .

Proof . We will use the usual notation

(P k,Qk) = Fk(qk,pk)

where we know from (52.3) that P k and qk are functions ofQk,pk. Then, using Equation

(52.2),
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(52.5)

dW̃ (Q,p) =
N∑
k=1

P kdQk + qkdpk − pkdQk−1 −Qk−1dpk

=
N−1∑
k=1

(P k − pk+1)dQk +
N∑
k=2

(qk −Qk−1)dpk

+ (PN − p1)dQN + (q1 −QN )dp1.

This formula proves that (Q,p) is critical exactly when:

Fk(qk,pk) = (qk+1,pk+1),∀k ∈ {1, . . . , N − 1},

FN (qN ,pN ) = (q1,p1),

that is, exactly when (q1,p1) is a fixed point for F . ��

B. Interpretation Of W̃ As Action Of Broken Geodesic

When F is the time 1 map of some Hamiltonian and we decompose F as in (52.4), W̃ has

the interpretation of the action of a “broken” solution of the Hamiltonian equation. This is

similar to the situation in Chapter 7. This time however, the jumps are both vertical and

horizontal:

p

q

tN ttkt0

pk , qk

pk , Qk-1

Pk-1 , Qk-1

PN , QN

p1 , q1

PN , q1

p1 , q1

γ
k

γΝ−1

γ
k-1

γ1

Fig. 52.1. Interpretation of W̃ as the action of a “broken” solution Γ , concatenation of
the solution segments γk and “corners” in the t = tk planes.

Each curve γk in Figure 52.1 is the unique solution of Hamilton’s equations starting at

(qk,pk, tk) where tk = k−1
N and flowing for time 1/N . Since S̃k(Qk,pk) = Sk(qk,pk)+
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pkqk and Sk(qk,pk) =
∫
γk
pdq−Hdt (see Theorem 59.7), W̃ measures the action of the

broken solution Γ :

(52.6)
W̃ (Q1,p1, . . . ,QN ,pN ) =

N∑
k=1

pk(qk −Qk−1) +
N∑
k=1

∫
γk

pdq −Hdt

=
∫
Γ

pdq −Hdt,

where we have used the fact that, on the “corner” segments, dt ≡ 0, and on the vertical part

of these corners, dq ≡ 0. This is the definition given by Chaperon (1984) and (1989).

C. The Conley-Zehnder Theorem

The following theorem solved a famous conjecture by Arnold (1978) in the case of the

torus. It was hailed as the start of symplectic topology, as it shows that symplectic diffeo-

morphisms have dynamics necessarily different from that of general diffeomorphisms, or

even volume preserving diffeomorphisms. The original proof of Conley & Zehnder (1983)

also reduces the analysis to finite dimensions, but by truncating Fourier series of periodic

orbits. Chaperon’s proof avoids the functional analysis altogether.

Theorem 52.4 (Conley-Zehnder) Let h1 be a Hamiltonian map of T2n. Then h1 has at

least 2n+1 distinct fixed points and at least 2n of them if they all are nondegenerate.

Proof . Let W̃ be defined as in Proposition 52.3 for the decomposition of h1 into sym-

plectic maps close to Id given by (52.4). We will show that W̃ is equivalent to a g.p.q.i.

on T2n, and hence, by Proposition 64.1, it has the prescribed number of critical points,

corresponding to fixed points of h1. We refer the reader to Section 64 for the definition

and properties of generating phases that are relevant here. We first note that W̃ induces a

function on (IR2n)N/ZZ2n where ZZ2n acts on (IR2n)N by:

(mq,mp).(Q1,p1, . . . ,QN ,pN ) = (Q1 +mq,p+mp, . . . ,QN +mq,pN +mp)

The fact that W̃ is invariant under this action is most easily seen from (52.6). Indeed, since

the Hamiltonian flow is a lift from one on T2n, the curve γk + (mq,mp, 0) is the solution

between (qk +mq,pk +mp) and (Qk +mq,P k +mp) starting at time k−1
N of that flow.

But



52. Chaperon’s Method 223

∫
γk+(mq,mp,0)

pdq+Hdt =
∫
γk

(p+mp)dq−Hdt = mp(Qk − qk) +
∫
γk

pdq−Hdt

Hence the action of γk changes by mp(Qk − qk) under this transformation. On the other

hand, under the same transformation, the sum
∑N
k=1 pk(qk − Qk−1) of Formula (52.6)

changes by
∑N
k=1mp(qk − Qk−1). Summing up the actions of the γk, these changes

cancel out, from which we deduce that W̃ is invariant under the ZZ2n action.

We now show that W̃ is equivalent to a g.p.q.i. over T2n. Let E = (IR2n)N → IR2n be

the bundle given by the projection map onto (QN ,pN ) and let χ : E → E be the bundle

diffeomorphism given by:

χ(Q1,p1, . . . ,QN ,pN ) = (a1, b1, . . . ,aN−1, bN−1,QN ,pN )

where
ak = Qk −Qk−1 (Q0 = QN )

bk = pk − pN .

In these new coordinates, the ZZ2n action only affects (QN ,pN ), so that W̃ ◦χ−1 induces a

functionW on (IR2n)N−1×T2n. We now need to show thatW is in fact a g.p.q.i. Define W̃0

(resp. W0) to be the functions W̃ (resp. W ) obtained when setting the Hamiltonian to zero.

Since S̃k(Qk,pk) = pkQk in this case (see Remark 52.2), W̃0(Q,p) =
∑N
k=1 pk(Qk −

Qk−1) and hence a simple computation yields

W0(a, b,QN ,pN ) =
N−1∑
k=1

ak · bk

which, as easily checked, is quadratic nondegenerate in the fiber. Finally, we show that
∂
∂v (W −W0) is bounded, where v = (a, b). It is sufficient for this to check that d(W̃ −W̃0)

is bounded. Using (52.5), we obtain:

d(W̃ − W̃0) =
N∑
k=1

(P k − pk+1)dQk +
N∑
k=1

(qk −Qk−1)dpk

−
N∑
k=1

(Qk −Qk−1)dpk −
N∑
k=1

(pk − pk+1)dQk

=
N∑
k=1

(qk −Qk)dpk +
N∑
k=1

(P k − pk)dQk
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where we have set throughout Q0 = QN ,pN+1 = p1. Since by definition (Qk,P k) =

Fk(qk,pk) where Fk = h
k
N
k−1
N

lifts a diffeomorphism of T2n, the coefficients of the above

differential must be bounded. We can conclude by applying Proposition 64.1. ��

Remark 52.5 Since the lift of the orbits we find are closed, the orbits in T2n are contractible.

In general, one cannot hope to find periodic orbits of different homotopy classes, as the

example H0 ≡ 0 shows. It would be interesting, however, to study the special properties of

the set of rotation vectors that orbits of h1 may have, i.e., to find out if being Hamiltonian

implies more properties on this set than those known for general diffeomorphisms of T2n.

53. Generating Phases And Symplectic Geometry

We urge the reader to read Section 64, where we define generating phases as functions

W : E → IR, where E is a vector bundle over the manifold M . We then give conditions

under which lower estimates on the number of critical points of W can be obtained from

the topology of M . In this section, we show how such functions give rise to Lagrangian

submanifolds of T ∗M , hence the adjective “generating”. In particular, we show that the

action function obtained either in the symplectic twist map setting or in the Chaperon

approach of last section generate a Lagrangian manifold canonically symplectomorphic to

the graph of of the map F under consideration. More generally, this construction unifies the

different finite, and even infinite, variational approaches in Hamiltonian dynamics.

A. Generating Phases and Lagrangian Manifolds

Let W be a differentiable function M → IR. In Section 58.C, we show that:

dW (M) = {(q, dW (q)) | q ∈M}

is a Lagrangian submanifold of T ∗M . Note that this manifold is a graph over the zero

section 0∗M of T ∗M . Heuristically, we would like to make it possible to similarly “generate”

Lagrangian submanifolds that are not graphs with some kind of function. One way to do this

is to add auxiliary variables and see our Lagrangian manifold as an appropriate projection in

T ∗M of a manifold in some bundle overM . This is what is behind the following construction.
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Let π : E →M be a vector bundle over the manifold M . Let W (q,v) be a real valued

function on an open subset of E. The derivative ∂W
∂v : E → E∗ of W along the fiber of E

is well defined, in the sense that if U is a chart on M and ψ1, ψ2 : U × V → π−1(U) are

two local trivializations of E, and W1 = W ◦ ψ1, W2 = W ◦ ψ2, then

Φ∗
∂W1

∂v
(q,v)dv =

∂W2

∂v
(Φ(q,v))dv

where Φ = ψ2 ◦ ψ−1
1 is the change of trivialization. We assume that the map: (q,v) �→

∂W
∂v (q,v) is transverse to 0. This means that the second derivative (in any coordinates)

( ∂
2W
∂v∂q ,

∂2W
∂v2 ) is of maximum rank at points (q,v) where ∂W

∂v (q,v) = 0. With this as-

sumption, the following set of fiber critical points is a manifold of same dimension as

M :

(53.1) ΣW =
{

(q,v) ∈ E
∣∣∣ ∂W
∂v

(q,v) = 0
}
.

[For a proof of this general fact about transversality, see eg. the theorem p.28 in Guillemin

& Pollack (1974) ]

Define the map:

iW : ΣW → T ∗M

(q,v)→
(
q,
∂W

∂q
(q,v)

)

Exercise 53.1shows that this is an immersion. We now show directly that this immersion is

Lagrangian:

i∗Wpdq =
∂W

∂q
(q,v)dq = dW

∣∣
ΣW

(q,v)

and hence:

i∗W (dq ∧ dp) = d2W
∣∣
ΣW

= 0.

We will say that W is a generating phase for a Lagrangian immersion j : L → T ∗M if

j(L) = iW (ΣW ).

Exercise 53.1 Show that iW : ΣW → T ∗M is an immersion, i.e. that DiW
∣∣
ΣW

has full

rank (Hint. Use the transversality condition to show that KerDiW ∩ TΣW = {0}).
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B. Symplectic Properties of Generating Phases

We start with the trivial, but important:

Proposition 53.2 Suppose the Lagrangian submanifold L ⊂ T ∗M is generated by a

function W : E → IR. The points in the intersection of L with the zero section 0∗M
of T ∗M are in a one to one correspondence with the critical points of W .

Proof . iW (q,v) is inL if and only if ∂W∂v (q,v) = 0. It is in 0∗M if and only if ∂W∂q (q,v) =

0. ��
In Section 64, we find that critical points persist under elementary operations on gen-

erating phases: if W1 : E1 → IR, and W2 : E2 → IR are two generating phases such

that

W2 ◦ Φ = W1 + C,

or W2 : E1 × E2 → IR and

W2(q,v1,v2) = W1(q,v1) + f(q,v2)

where Φ is a fiber preserving diffeomorphism, f is nondegenerate quadratic in v2 and C a

constant, then W1 and W2 have the same number of critical points. The first operation is

called equivalence, the second stabilization. This persistence is now geometrically explained

by Proposition 53.2 and the following:

Lemma 53.3 Two equivalent generating phases generate the same Lagrangian im-

mersion. This is also true under stabilization.

Proof . Let W2 ◦ Φ = W1 + C where Φ is a fiber preserving diffeomorphism between

E1 →M and E2 →M . Writing Φ(q,v) = (q, φ(q,v)) = (q,v′), where v → φ(q,v) is

a diffeomorphism for each fixed q, we have: W2(q, φ(q,v)) = W1(q,v) + C. and thus

∂W1

∂v
=

(
∂W2

∂v

′
◦ Φ

)
.
∂φ

∂v

This implies that ΣW2 = Φ(ΣW1), and we conclude the proof of the first assertion by

noticing that:
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∂W1

∂q
(q,v) =

∂W2

∂q
(Φ(q,v)).

Now letW2(q,v1,v2) = W1(q,v1)+f(q,v2) where f is quadratic and nondegenerate

in v2. We have:

∂W2/∂v = 0⇔ v2 = 0 and ∂W1/∂v1 = 0

so thatΣW2 = ΣW1×0E2 , where 0E2 is the zero section ofE2. Moreover ∂f/∂q
∣∣
{v2=0} =

0 so that, at points (q,v1, 0) of Σ2,
(
q,
∂W2

∂q
(q,v1, 0)

)
=

(
q,
∂W1

∂q
(q,v1)

)
.

��

C. The Action Function Generates the Graph of F

We examine here the twist map case, and let the reader perform the analysis for the Chaperon

case in Exercise 53.4 . Let M be an n–dimensional manifold and F be a symplectic twist

map on U ⊂ T ∗M , where U is of the form {(q,p) ∈ T ∗M | ‖p‖ < K}. Let S(q,Q) be

a generating function for F . S can be seen as a function on some open set V of M ×M ,

diffeomorphic to U . (19) Since P dQ− pdq = dS(q,Q), we can describe the graph of F

as:

Graph(F ) =
{(
q,−∂S

∂q
(q,Q),Q,

∂S

∂Q
(q,Q)

) ∣∣∣ (q,Q) ∈ V
}
⊂ (T ∗M)2,

which is canonically symplectomorphic to (see the map j below):
{(
q,Q,

∂S

∂q
(q,Q),

∂S

∂Q
(q,Q)

) ∣∣∣ (q,Q) ∈ V
}
⊂ T ∗(M ×M).

One can easily check that this manifold has S as a generating phase. In other words the

generating function of a symplectic twist map F is a generating phase for the graph

of F . Consider now the more general case where F = FN ◦ . . . ◦ F1 is a product of

symplectic twist maps of U ⊂ T ∗M . This time, the candidate for a generating phase is:

W (q) =
N∑
k=1

Sk(qk, qk+1),

19in the case whereM = Tn, and the map is defined on all of T ∗Tn, we have V ∼= Ũ ∼= IR2n.
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where we do not identify qN+1 and q1 in any way. Then, writing

v = (q2, . . . , qN ), q = (q1, qN+1),

we show that W (q,v) is a generating phase for Graph(F ) ⊂ (T ∗M)2. Let

U =
{
(q1, . . . , qN+1) ∈MN+1 | (qk, qk+1) ∈ ψk(U)

}

where ψk is the “Legendre transformation” attached to the twist map Fk. Let β : MN+1 →
M ×M be the map defined by: (q1, . . . , qN+1) → (q1, qN+1). The bundle that we will

consider here is:

U → β(U) ⊂M ×M.

The Critical Action Principle (Proposition 23.2, and Exercise 26.4) states that ∂W∂v (q,v) =

0 exactly when q = (q,v) is the q component of the orbit of (q1,p1(q1, q2)) under

the successive Fk’s. This means that the set of orbits under the successive Fk’s is in

bijection with the set ΣW = {∂W∂v (q,v) = 0} as defined in (53.1) . Since this set is

parameterized by the starting point of an orbit, it is diffeomorphic to U , hence a manifold.

For q ∈ ΣW , we have:

F (q1,p1(q1, q2)) =
(
qN+1,PN+1(qN , qN+1)

)

but:

p1(q1, q2) = −∂1S1(q1, q2) = −∂W
∂q1

(q1, qN+1,v)

PN+1(qN , qN+1) = ∂2SN (qN , qN+1) =
∂W

∂qN+1

(q1, qN+1,v)

In other words, the graph of F in T ∗M × T ∗M can be expressed as:

Graph(F ) =
{(
q1,−

∂W

∂q1

(q,v), qN+1,
∂W

∂qN+1

(q,v)
) ∣∣∣∣ (q,v) ∈ ΣW

}
.

To finish our construction, we define the following symplectic map:

j : (T ∗M × T ∗M,−ΩM ⊕ΩM )→ (T ∗(M ×M), ΩM×M )

(q,p,Q,P )→ (q,Q,−p,P ).

where ΩX denotes the canonical symplectic structure on T ∗X . Clearly:

j(Graph(F )) = iW (ΣW ),
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that is, W generates the Lagrangian manifold Graph(F ). Note that the fixed points of F

correspond to Graph(F ) ∩∆(T ∗M × T ∗M), i.e. to q ∈ ΣW such that q1 = qN+1 and

−∂1S1(q1, q2) = ∂2SN (qN , qN+1), which are critical points ofW
∣∣
{q1=qN+1}

, as we well

know.

Exercise 53.4 Show that the generating function W of Chaperon (see Proposition 52.3)
generates the graph of the Hamiltonian map F : T2n → T2n. (Hint. If you are stuck,
consult Laudenbach & Sikorav (1985)).

D. Symplectic Reduction

We introduce yet another geometric point of view for the generating phase construction. We

will see that if a Lagrangian manifold L ⊂ T ∗M is generated by the phase W : E → IR,

than in fact L is the symplectic reduction of the Lagrangian manifold dW (E) ⊂ T ∗E. We

introduce symplectic reduction in the linear case, and only sketch briefly the manifold case,

referring the reader to Weinstein (1979) for more detail.

Consider a symplectic vector space V,Ω0 of dimension 2n. Let C be a coisotropic

subspace ofV . LetΛ(V ) be the set of Lagrangian subspaces ofV (a Grassmanian manifold).

The process of symplectic reduction gives a natural map Λ(V )→ Λ
(
C/C⊥

)
that we now

describe. By Theorem 55.1, we know that we can find symplectic coordinates for V in

which:

C = {(q1, . . . , qn, p1, . . . , pk)}

and we have C⊥ = {(qk+1, . . . , qn)} ⊂ C. Then

C/C⊥ � {(q1, . . . , qk, p1, . . . , pk)}

which is obviously symplectic. It is called the reduced symplectic space alongC. We denote

byRed the quotient map C → C/C⊥ . The symplectic formΩC of C/C⊥ is natural in the

sense that it makes Red into a symplectic map:

(53.2) ΩC(Red(v), Red(v′)) = Ω(v,v′).

Proposition 53.5 Let L ⊂ V be a Lagrangian subspace and C ⊂ V a coisotropic

subspace. Then
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LC = Red(L ∩ C) = L ∩ C/L ∩ C⊥

is Lagrangian in C/C⊥.

We say that LC is the symplectic reduction of L along the coisotropic space C.

Proof . Formula (53.2) tells us that LC is isotropic. We need to show that dimLC =
1
2dimC/C

⊥. From linear algebra:

dimLC = dim(L ∩ C)− dim(L ∩ C⊥).

As would be the case with any nondegenerate bilinear form, the dimensions of a subspace

and that of its orthogonal add up to the dimension of the ambient space. Also, the orthogonal

of an intersection is the sum of the orthogonal. Hence:

dimV = dim(L ∩ C⊥) + dim(L ∩ C⊥)⊥ = dim(L ∩ C⊥) + dim(L+ C),

since L⊥ = L. Thus

dimLC = dim(L ∩ C)− dimV + dim(L+ C) = dimL+ dimC − dimV

= dimC − 1
2
dimV. (53.3)

On the other hand:

dim(C/C⊥) = dimC − dimC⊥ = dimC − (dimV − dimC)

= 2dimC − dimV (53.4)

We conclude that dimLC = 1
2dim(C/C⊥) by putting (53.3) and (53.4) together. ��

We now sketch the reduction construction in the manifold case. Let C be a coisotropic

submanifold of a symplectic manifold (M,Ω). Then TC⊥ is a subbundle of TC (that is,

the fibers are of same dimension and vary smoothly) so we can form the quotient bundle

TC/TC⊥, with base C and fiber the quotient TqC/TqC⊥ at each point q of C. It turns out

that this quotient bundle can actually be seen as the tangent bundle of a certain manifold

C/C⊥, whose points are leaves of the integrable foliation TC⊥. Moreover one can show

that the naturally induced form ΩC is indeed symplectic on C/C⊥. Finally, we define

red : C → C/C⊥ as the projection. Its derivative is basically the map Red defined
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above. One can show that, if C intersect a Lagrangian submanifold L transversally, then

LC = red(L) is an immersed symplectic manifold of C/C⊥, which is the reduction of L

along C.

We now apply this new point of view to the generating function construction. Let E =

M × IRN . We show that if L = iW (ΣW ) ⊂ T ∗M is generated by the generating phase

W : E → IR, then L is in fact the reduction of dW (E) ⊂ T ∗E along the coisotropic

manifold C = {pv = 0}, where we have given T ∗E the coordinate (q,v,pq,pv). This is

just a matter of checking through the construction. We know that dW (E) is Lagrangian in

T ∗E. Its intersection with C is the set:

dW (E) ∩ C =
{

(q,v,pq,pv) ∈ T ∗E
∣∣∣ pq =

∂W

∂q
(q,v), pv =

∂W

∂v
(q,v) = 0

}

=dW (ΣW ).

whereΣW is the set of fiber critical points inE. Since by the transversality condition in our

definition of generating phase ΣW is a manifold, so is dW (E) ∩ C: for any W , the map

dW : E → T ∗E is an embedding. The bundle TC⊥ is the one generated by the vector fields
∂
∂v and thusC/C⊥ can be identified withT ∗M = {(q,pq)}. The image ofdW (E)∩C under

the projection red : C → C/C⊥ is exactly iW (ΣW ) = {(q, ∂W∂q (q,v))
∣∣ ∂W
∂v (q,v) =

0} = L. Note that because E = M × IRN , the above argument is independent of the

coordinate chosen (eg. C is well defined). With a little care, the argument extends to the

case where E is a nontrivial bundle over M .

Exercise 53.6 Show that, in the Darboux coordinate used above, the q–plane and the
p–plane of V both reduce to the q and p–plane (resp.) of C/C⊥.

E. Further Applications Of Generating Phases

The symplectic theory of generating phases does not only provide a unifying packaging for

the different variational approaches to Hamiltonian systems. It can also serve as the basis

of symplectic topology, where invariants called symplectic capacities play a crucial role.

Roughly speaking, capacities are to symplectic geometry what volume is to Riemannian

geometry: they provide obstructions for sets to be symplectomorphic, or for sets to be

symplectically squeezed inside other sets. Viterbo ( 1992) uses generating phases to define

such capacities, in contrast to prior approaches by Gromov (1985) who uses the theory of
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pseudo–holomorphic curves. The basis of the definition of capacity in Viterbo ( 1992) is a

converse statement to Lemma 53.3:

Proposition 53.7 If W1 and W2 both generate ht(0∗M ), where ht is a Hamiltonian

isotopy, then after stabilization W1 and W2 are equivalent.

In view of this, Viterbo is able to define a capacity for a Lagrangian manifold L Hamil-

tonian isotopic to 0∗M by choosing minimax values of a given (and hence any) generating

phase for L.

In another work, Viterbo (1987) shows that a certain integer function called Maslov

Index on the set of paths in the Lagrangian Grassmannian is invariant under symplectic

reduction. It can be shown that the Lagrangian Grassmanian Λ(V ) has first fundamental

group π1(Λ(V )) = ZZ. As mentioned in Chapter 6, we can roughly interpret this by saying

that Λ(V ) has a “hole” and the Maslov index measures the number of turns a curve makes

around that hole. Now letWt be the generating phases for a Hamiltonian isotopy ht. The set

dWt(E) is Lagrangian in T ∗E and its reduction is the graph of ht (where Wt is the action

function for a decomposition of ht). The Maslov Index in Λ(T ∗E) detects the change in

Morse Index of the second derivative of Wt, whereas on the graph of ht, it detects a non

transverse intersection with the plane {(q,p) = (Q,P )}. This can be used to give a neat

generalization to Lemma 29.4 and to explain the classical relationship discovered by Morse

between the index of the second variation of the action function and the number of conjugate

points (see Milnor (1969) for the classical, Riemannian geometry case, and Duistermaat

(1976) for the more general convex Lagrangian case).


