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GENERATING PHASES AND
SYMPLECTIC TOPOLOGY

In Appendix 1, Section 58, weremark that thedifferential of afunctionW : M — T* M
givesriseto the Lagrangian submanifold dW (M) of T* M . Asageneralization of thisfact,
one can construct Lagrangian submanifolds of 7+ M as symplectic reductions of graphs
of differentials of generating phases, which are functions on vector bundles over M.

Generating phases are the common geometric framework to the different discrete vari-
ational methods in Hamiltonian systems, including the method developed in this book.
Applications of generating phases range from the search for periodic orbits to the Maslov
index, symplectic capacities and singularities theory. Generating phases are a viable alter-
native to the use of heavy functional analytic variational methods in symplectic topology.

This chapter intends to be a basic introduction to generating phases. We first present
Chaperon’s method, which he used to give an aternate proof of the theorem of Conley &
Zehnder (1983). Thistheorem, which solved aconjecture by Arnold on the minimum number
of periodic pointsof Hamiltonian mapsof T>", isconsidered by many asthe starting point of
symplectic topology, in the sense that it implies that the C° closure of the set of symplectic
diffeomorphisms is distinct from the set of volume preserving diffeomorphisms. We then
survey the abstract structure of generating phase, highlighting the common geometric frame
for the symplectic twist maps method and that of Chaperon (as well as others).
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52. Chaperon’s Method And The Theorem Of Conley-Zehnder

Chaperon (1984) introduced a method “du type géodesiques brisées’ for finding periodic
orbits of Hamiltonians which did not make use of a decomposition by symplectic twist
maps. This method has been the basis of later work by eg. Laudenbach & Sikorav (1985),
Sikorav (1986), and Viterbo ( 1992).

A. A New Action Function

Until now, we have studied exact symplectic maps that come equipped with a generating
function due to the twist condition. The concept of generating function is more general than
this, however: we now show how an exact symplectic map of IR*" which is uniformly C*
close to Id may have another kind of generating function. The small time ¢t map of alarge
class of Hamiltonians satisfy this condition. Hence, the time one map of these Hamiltonians
can be decomposed into maps that possess this kind of generating function, leading to a
different variational setting for periodic orbits than the one we have used so far. Let

F:R*™ — R*
(q,p) — (Q, P)
be an exact symplectic diffeomorphism:
(52.1) PdQ — pdq = F*pdq — pdq = dS,

for some S : IR?" — IR (remember that all symplectic diffeomorphism of IR?" areiin fact
exact symplectic. We stress exact symplectic here in view of our later generalization to
T*M). Thefollowing simple lemmais crucial here.

Lemma 52.1 Let F : IR*" — IR®" be an exact symplectic diffeomorphism. Then, if
|F = Id|| 1 is small enough, the map

¢:(q,p) — (Q,p)

is a diffeomorphism of R*™ .

Proof. Q(q,p) is (uniformly) C! closeto q and thus ¢ is (uniformly) C* close to Id,
hence a diffeomorphism. O
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Treating ¢ asachange of coordinates, we canview S asafunction of thevariablesQ, p.
We now show how, in away that is dlightly different from the twist map case, F' can be
recovered from S. We define

S(Q.p) =pg+5(Q.p), where q=q(Q,p);

then
(52.2) dS = pdq + qdp + PdQ — pdq = PdQ + qdp

and thus S generates F, in the sense that:

oS
(52.3) gg
q= %(Q,p)-

Remark 52.2 Note that Id is not a symplectic twist map and thus it cannot be given a
generating function in the twist map sense. One of the advantages of the present approach
isthat Id does have a generating function, which is

S(Q.p) = pQ.

Asanillustration, fixed points of F' are given by the equations:

a5
= — = P
p 8Q Y
- ap q7

which are equivalent to the following equation:

d(S —pQ) = (P —p)dQ + (g — Q)dp = 0.

Hence we have reduced the problem of finding fixed points of an exact symplectic diffeo-
morphism C* close to Id on IR*" to the one of finding critical points for a real valued
function. We now apply this method to give Hamiltonian maps of T>" afinite dimensional
variational context. It can aso be used for time one maps of Hamiltonians with compact
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support in IR*", or Hamiltonian maps that are C° close to Id in a compact symplectic
manifold.

Let H : IR*" x IR beaC? function with variables (g, p, t). Assume H is Z>" periodic
in the variables (g, p) (i.e., H is afunction on T?" x IR). Asin Appendix 1, we denote
by h} (q.p) = (q(t),p(t)) the solution of Hamilton's equations with initial conditions
q(to) = q, p(ty) = p. By assumption, hf can be seen as a Hamiltonian map on T*".
We know that 7} is exact symplectic (see Theorem 59.7). Furthermore, by compactness
of T", when |t — to| is small, hi, is C' close to Id (the Hamiltonian vector field of a
C? function is C!, hence so isits flow). For |t — to| small enough, we can apply Lemma
52.1 to get a generating function for h{ . To make this argument global, we decompose h!
in smaller time maps:

N1 2 1

(52.4) h'=h%_ 1 oh F,0...0hY ohY

N N N

and thus, for alarge enough IV, h!' can be decomposed into N maps that satisfy Lemma
52.1. [The farther h! isfrom Id, the bigger N must be]. We can then apply the following
proposition to h':

Proposition 52.3 Let ' = Fo...o F| where each Fy, is exact symplectic in T*IR",

Ot close to Id, and has generating function gk(Q,p). The fized points of F' are in

one to one correspondence with the critical points of :

N
W (Q1,p1,--»QnPr) = Y Sk(Qy, py) — PrQy
k=1

where we set Qy = Q-
Proof. Wewill usethe usual notation

(Pk, Q) = Fi(ay, pr)

where we know from (52.3) that P, and g, arefunctionsof Q,., p;.. Then, using Equation
(52.2),
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dW(Q,P) PdQy. + qrdpy, — prdQy_1 — Qr_1dpy
1

N
k=
(52.5) Nl Y
= Z (Pk — pk+1)ko + Z(Qk - Qk—l)dpk:

k=1 k=2
+ (Py —p1)dQy + (q; — Qy)dp;.

Thisformulaprovesthat (Q, p) is critical exactly when:
Fk(qkapk) = (qk—l—lapk—l—l)a\v/k € {17 s 7N - 1}7

FN(qN7pN) = (q17p1>7
that is, exactly when (q,, p,) isafixed point for F. O

B. Interpretation Of IV As Action Of Broken Geodesic

When F isthetime 1 map of some Hamiltonian and we decompose F asin (52.4), W has
the interpretation of the action of a“broken” solution of the Hamiltonian equation. Thisis
similar to the situation in Chapter 7. This time however, the jumps are both vertical and
horizontal:

PGy

Pno Gy
tn t

Py Qy

Fig. 52.1. Interpretation of W as the action of a “broken” solution I', concatenation of
the solution segments v, and “corners” in the t = t; planes.

Each curve v, in Figure 52.1 is the unique solution of Hamilton’s equations starting at
(@ks Pis tr) Wheret), = E21 and flowing for time 1 /N Since Sy (Qy, Pr.) = Sk(qy, Pr) +
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PLq; and Sk(qy, P) = f% pdq — Hdt (see Theorem 59.7), W measures the action of the
broken solution I

N N
W(Qy:p1,---.Qn,PN) = Zpk(% — Q1) + Z/ pdq — Hdt
k=1 Tk

(52.6) k=1

= / pdq — Hdt,
r

where we have used the fact that, on the “corner” segments, dt = 0, and on the vertical part
of these corners, dg = 0. Thisisthe definition given by Chaperon (1984) and (1989).

C. The Conley-Zehnder Theorem

The following theorem solved a famous conjecture by Arnold (1978) in the case of the
torus. It was hailed as the start of symplectic topology, as it shows that symplectic diffeo-
morphisms have dynamics necessarily different from that of general diffeomorphisms, or
even volume preserving diffeomorphisms. The original proof of Conley & Zehnder (1983)
also reduces the analysis to finite dimensions, but by truncating Fourier series of periodic
orbits. Chaperon’s proof avoids the functional analysis altogether.

Theorem 52.4 (Conley-Zehnder) Let h' be a Hamiltonian map of T>". Then h* has at
least 2n+1 distinct fixed points and at least 2™ of them if they all are nondegenerate.

Proof. Let W be defined as in Proposition 52.3 for the decomposition of 2! into sym-
plectic maps close to Id given by (52.4). We will show that W is equivalent to a g.p.q.i.
on T?", and hence, by Proposition 64.1, it has the prescribed number of critical points,
corresponding to fixed points of ~'. We refer the reader to Section 64 for the definition
and properties of generating phases that are relevant here. We first note that 17 induces a
function on (R*")N /Z*" where Z*" actson (IR*")" by:

(mQ7mP)'(Qlapl7'--;QvaN) = (Ql +m(lap+mp7"'7QN +mQ7pN +mp)

The fact that TV isinvariant under this action is most easily seen from (52.6). Indeed, since
the Hamiltonian flow isalift from one on T*", the curve 4 + (m,, m,, 0) isthe solution
between (g, +mg, p, + m,) and (Q, + my, Py, +m,,) starting at time £-2 of that flow.
But
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/ pdq+Hdt:/ (p+mp)dq—Hdt:mp(Qk—qk)+/ pdq — Hdt
7k+(mqvmp70) Tk Yk

Hence the action of ~;, changes by m,,(Q,, — g,,) under this transformation. On the other
hand, under the same transformation, the sum fozl pr(q;, — Q)_,) of Formula (52.6)
changes by S~ m,(q, — Q,_,). Summing up the actions of the -, these changes
cancel out, from which we deduce that ¥ is invariant under the Z*" action.

We now show that W is equivalent to ag.p.q.i. over T?". Let F = (IR*")N — IR*" be
the bundle given by the projection map onto (Q ,py) andlet x : E — E bethe bundle
diffeomorphism given by:

X(Qlap17"'aQNapN> (alabb'";aN—17bN—17QN7pN>

where

ap =Qp — Qp_y (Qo = QN)

by =p, — PN
In these new coordinates, the Z>" action only affects (Q y, py ), S0 that W o ! inducesa
function 1/ on (IR*™)N 1 x T?" . We now need to show that W isinfact ag.p.q.i. Define W
(resp. W) to be the functions T (resp. W) obtained when setting the Hamiltonian to zero.

Since gk(lepk) = p;,Qy, inthis case (see Remark 52.2), Wo(a,l_?) = Zivzl Pe(Q) —
Q)._,) and hence a simple computation yields

which, as easily checked, is quadratic nondegenerate in the fiber. Finally, we show that
2 (W —W,) isbounded, wherev = (@, b). Itissufficient for thisto check that d(W — W)
is bounded. Using (52.5), we obtain:

AW = Wo) =) (Pr — Ppy1)dQy + Z — Qp_1)dpy
k
N1
- (Qr — Qp_1)dpy, — (Py, — pk+1)ko
k=1

MziMziMz

N
(ax — Qr)dpy, + Z(Pk — Pr)dQy,

k=1

e
Il
—



224 10: GENERATING PHASES

where we have set throughout Qo = Qn,Py,1 = Py. Since by definition (Q, Py) =
Fy(qy,p,) Where Fy, = h {j . lifts adiffeomorphism of T2", the coefficients of the above
differential must be bounded. We can conclude by applying Proposition 64.1. O

Remark 52.5 Sincethelift of the orbitswefind are closed, the orbitsin T*" are contractible.
In general, one cannot hope to find periodic orbits of different homotopy classes, as the
example Hy = 0 shows. It would be interesting, however, to study the specia properties of
the set of rotation vectors that orbits of 4 may have, i.e., to find out if being Hamiltonian
implies more properties on this set than those known for general diffeomorphisms of T>",

53. Generating Phases And Symplectic Geometry

We urge the reader to read Section 64, where we define generating phases as functions
W : E — IR, where E is a vector bundle over the manifold M. We then give conditions
under which lower estimates on the number of critical points of 1 can be obtained from
the topology of M. In this section, we show how such functions give rise to Lagrangian
submanifolds of 7* M, hence the adjective “generating”. In particular, we show that the
action function obtained either in the symplectic twist map setting or in the Chaperon
approach of last section generate a Lagrangian manifold canonically symplectomorphic to
the graph of of the map F' under consideration. More generally, this construction unifiesthe
different finite, and even infinite, variational approachesin Hamiltonian dynamics.

A. Generating Phases and Lagrangian Manifolds

Let W be adifferentiable function M — IR. In Section 58.C, we show that:

dW (M) ={(q,dW(q)) | g € M}

is a Lagrangian submanifold of 7M. Note that this manifold is a graph over the zero
section 03, of 7% M. Heuristically, wewould liketo makeit possibleto similarly “generate”
L agrangian submanifoldsthat are not graphswith somekind of function. Oneway to do this
isto add auxiliary variables and see our Lagrangian manifold as an appropriate projectionin
T M of amanifoldinsomebundleover M. Thisiswhat isbehind thefollowing construction.
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Let 7 : £ — M beavector bundle over the manifold M. Let W (q, v) beareal valued
function on an open subset of £. The derivative 2V : E — E* of W aong the fiber of E
iswell defined, in the sense that if U isachart on M and 1,45 : U x V — 7= 1(U) are
two local trivializationsof £/, and W1 = W o 1)y, Wy = W o 1), then

oW, oW,
P av (q,’U)d’U— 8'0 (@(q7,v))dv

where @ = 15 o wl‘l is the change of trivialization. We assume that the map: (g, v) —

%—‘;V(q, v) iS transverse to 0. This means that the second derivative (in any coordinates)

(gig‘;, V) is of maximum rank a points (g,v) where 2% (g, v) = 0. With this as-

sumption, the following set of fiber critical points is a manifold of same dimension as
M:

(53.1) S = {(qm) GE‘ %—V:(q,v)zo}.

[For a proof of this general fact about transversality, see eg. the theorem p.28 in Guillemin
& Pollack (1974) ]

Define the map:
iW : EW —T*M

(g,v) — (q, %—V;(q,v)>
Exercise 53.1shows that thisis an immersion. We now show directly that thisimmersionis
Lagrangian:
iy pdq = %—qu(m v)dg = dW|, (q,v)
and hence:
ity (dg A dp) = d2W}EW =0.

We will say that W is a generating phase for aLagrangian immersion j : L — T*M if
J(L) = iw (Zw).

Exercise 53.1 Show that iw : Yw — T*M is an immersion, i.e. that DiW|Z has full
w
rank (Hint. Use the transversality condition to show that KerDiw NTXw = {0}).



226 10: GENERATING PHASES
B. Symplectic Properties of Generating Phases

We start with the trivial, but important:

Proposition 53.2 Suppose the Lagrangian submanifold L C T*M is generated by a
function W : E'— IR. The points in the intersection of L with the zero section 0},

of T*M are in a one to one correspondence with the critical points of W.

Proof. iw(g,v)isinLifandonlyif G (q,v) = 0.Itisin0j, if andonly if §¥ (g, v) =
0. 0
In Section 64, we find that critical points persist under elementary operations on gen-
erating phases. if W, : F; — IR, and W, : E5 — IR are two generating phases such
that
Wyo® =W; + C,

OrW22E1><E2—>IRand

Wa(q,v1,v2) = Wi(q,v1) + f(q,v2)

where @ is afiber preserving diffeomorphism, f is nondegenerate quadratic in v, and C' a
constant, then 1/; and W5 have the same number of critical points. The first operation is
called equivalence, the second stabilization. Thispersistenceisnow geometrically explained
by Proposition 53.2 and the following:

Lemma 53.3 Two equivalent generating phases generate the same Lagrangian im-

merston. This is also true under stabilization.

Proof. Let Wy 0® = W, + C where @ is afiber preserving diffeomorphism between
Ey — M and E; — M. Writing &(q,v) = (q, ¢(q,v)) = (q,v’), wherev — ¢(q,v) is
adiffeomorphism for each fixed q, we have: W (q, ¢(q,v)) = Wi(q,v) + C. and thus

oWy 6W2/O¢ %
ov “Ov

ov

This implies that Xy, = @(Xw, ), and we conclude the proof of the first assertion by
noticing that:



53. Generating phases. 227

e (@0) = % 2 (g, 0).

Now let W5 (q, v1,v2) = Wi(q,v1)+ f(q,v2) where f isquadratic and nondegenerate

in vo. We have:
8W2/(‘9v =0 vy,=0 and 6W1/8v1 =0

sothat Xy, = Yy, x 0g,, where0g, isthe zero section of E,. Moreover af/aq\{vFO} —
0 so that, at points (g, v1,0) of X,

8W2 o 8W1
(q7 W(q/vlao)) - (qa 8—q(qvvl)) .

C. The Action Function Generates the Graph of F

We examine herethetwist map case, and | et thereader perform the analysisfor the Chaperon
case in Exercise 53.4. Let M be an n—dimensional manifold and F' be a symplectic twist
maponU C T*M,whereU isof theform {(q,p) € T*M | ||p|| < K}.Let S(q, Q) be
a generating function for F'. S can be seen as a function on some open set V' of M x M,
diffeomorphic to U. ) Since PdQ — pdq = dS(q, Q), we can describe the graph of F
as.

Graph(F) = { (0.~ 50(0.20.Q. 33

which is canonically symplectomorphic to (see the map j below):

@Q) [@@evfcmm?

{(00.5:@@). 550Q) [@@ev]crora

6Q
One can easily check that this manifold has S as a generating phase. In other words the
generating function of a symplectic twist map F' is a generating phase for the graph
of F. Consider now the more general case where ' = Fy o ... o F} is a product of
symplectic twist maps of U C T* M. Thistime, the candidate for a generating phaseis:

N
w a) = Zsk<qk7qk+l)7

k=1

n the case where M = T™, and the map is defined on all of T*T", we have V = U =~ R*".
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where we do not identify qn ., and q; in any way. Then, writing

v:(q27"'7qN)7 q:<q17qN—|—1)a

we show that T (q, v) isagenerating phase for Graph(F) C (T*M)?. Let

U= {(qla"'qu+1) S MN+1 | (qk7q/€+1) < wk(U)}

where ¢, isthe “Legendre transformation” attached to thetwist map F,. Let 3 : MN+1 —
M x M be the map defined by: (q,,...,qx,1) — (q1,9n1)- The bundle that we will
consider hereis:

U— pU)C Mx M.

The Critical Action Principle (Proposition 23.2, and Exercise 26.4) statesthat %—VX (q,v) =
0 exactly when ¢ = (q,v) is the g component of the orbit of (q,,p;(q;,q>)) under
the successive F}.’s. This means that the set of orbits under the successive Fy’s is in
bijection with the set Xy = {Z¥(q,v) = 0} as defined in (53.1) . Since this set is
parameterized by the starting point of an orbit, it is diffeomorphic to U, hence a manifold.
Forgq € X, we have:

F(Qulh(‘h;‘lz)) = (QN+17PN+1(QN7QN+1))

but: oW
P1(q1,92) = —0151(q1,92) = _8—(11((11an+17”)
ow
PN+1(QN7qN+1) = aZSN(quqN—H) = 87(‘11,‘11\74-17”)
dnN+1

In other words, the graph of F'inT*M x T*M can be expressed as:

ow

ow
GTCLphF :{<q y — 4o \4,v),q s
( ) 1 8q1( ) N+1 8qN+1

(quv)> ’ (q7v) € ZW} .
To finish our construction, we define the following symplectic map:
j : (T*M X T*M,—QM ) QM) — (T*<M X M);-QMXM)
(q,p,Q,P) - (q>Q7 2 P)

where (2x denotes the canonical symplectic structureon 7* X . Clearly:

J(Graph(F)) = iw (Xw),
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that is, W generates the Lagrangian manifold Graph(F'). Note that the fixed points of F’

correspond to Graph(F) N A(T*M x T*M),i.e.toq € Xy suchthat g, = g, and

—0151(q1,45) = 2SN (gy, @n41), Whicharecritical points of W]{q Y aswewell
1—4dN+1

know.

Exercise 53.4 Show that the generating function W of Chaperon (see Proposition 52.3)
generates the graph of the Hamiltonian map F : T?" — T?". (Hint. If you are stuck,
consult Laudenbach & Sikorav (1985)).

D. Symplectic Reduction

We introduce yet another geometric point of view for the generating phase construction. We
will see that if a Lagrangian manifold L C T*M is generated by thephase W : £ — 1R,
than in fact L isthe symplectic reduction of the Lagrangian manifold dW (E) C T*E. We
introduce symplectic reduction in the linear case, and only sketch briefly the manifold case,
referring the reader to Weinstein (1979) for more detail.

Consider a symplectic vector space V, {2y of dimension 2n. Let C be a coisotropic
subspaceof V. Let A(V') bethe set of L agrangian subspacesof V' (aGrassmanian manifold).
The process of symplectic reduction givesanatural map A(V) — A (C/C+) that we now
describe. By Theorem 55.1, we know that we can find symplectic coordinates for V' in
which:

C={(q1, - qn:P1,---Pk)}
and we have C+ = {(qry1,...,q,)} C C. Then
C(/CfL = {(q17"'7qk7p17"'7pk)}

whichisobviously symplectic. Itiscalled the reduced symplectic space dong C. Wedenote
by Red the quotient map C' — C/C~+ . The symplectic form ¢ of C/C~+ isnatural inthe
sense that it makes Red into a symplectic map:

(53.2) Qc(Red(v), Red(v")) = 2(v,v").

Proposition 53.5 Let L C V be a Lagrangian subspace and C C V a coisotropic

subspace. Then
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Le=Red(LNC)=LNC/LNC*

is Lagrangian in C/C*.
We say that L« is the symplectic reduction of L along the coisotropic space C'.

Proof. Formula (53.2) tellsusthat Lo isisotropic. We need to show that dim Lo =
1dimC/C*. From linear algebra:

dimLc = dim(L N C) — dim(L N C*).

Aswould be the case with any nondegenerate bilinear form, the dimensions of a subspace
and that of itsorthogonal add up to the dimension of the ambient space. Also, the orthogonal
of an intersection is the sum of the orthogonal. Hence:

dimV = dim(L N C*) + dim(L N CH)*t = dim(L N C*) 4 dim(L + C),
since L+ = L. Thus

dimLc = dim(LNC) — dimV + dim(L + C) = dimL + dimC — dimV
1
= dimC — §dimV. (53.3)

On the other hand:

dim(C/CF) = dimC — dimC*+ = dimC — (dimV — dimC)
= 2dimC — dimV (53.4)

We conclude that dimL¢ = 3dim(C/C~) by putting (53.3) and (53.4) together. O

We now sketch the reduction construction in the manifold case. Let C' be a coisotropic
submanifold of a symplectic manifold (M, £2). Then TC+ is a subbundlie of T'C (that is,
the fibers are of same dimension and vary smoothly) so we can form the quotient bundle
TC/TC+, with base C and fiber the quotient T,,C/T,C+ at each point q of C. It turns out
that this quotient bundle can actually be seen as the tangent bundle of a certain manifold
C/C*, whose points are leaves of the integrable foliation 77C'*. Moreover one can show
that the naturally induced form ¢ is indeed symplectic on C//C*. Finaly, we define
red : C — C/C* as the projection. Its derivative is basically the map Red defined
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above. One can show that, if C' intersect a Lagrangian submanifold L transversally, then
Lc = red(L) isan immersed symplectic manifold of C'/C+, which isthe reduction of L
along C.

We now apply this new point of view to the generating function construction. Let £ =
M x RY. We show that if L = iw (Xw) C T*M is generated by the generating phase
W : E — TR, then L isin fact the reduction of dW(E) C T*FE aong the coisotropic
manifold C' = {p, = 0}, where we have given T* E the coordinate (q, v, p,, p,,)- Thisis
just amatter of checking through the construction. We know that dW (E) is Lagrangian in
T*E. Itsintersection with C isthe set:

ow ow
dW(E)NC = {(q,v7pq7pv) €T'E| p,= 6—q(q,v), Py = a—v(q,v) = 0}

—dW (Zw).

where Xy isthe set of fiber critical pointsin E. Since by the transversality condition in our
definition of generating phase Xy is a manifold, so is dW (E) N C: for any W, the map
dW : E — T*E isanembedding. Thebundle T’C* isthe one generated by the vector fields
2 andthusC/C* canbeidentifiedwithT*M = {(q, p,)}- Theimageof dW (E)NC under
the projection red : C — C/C* isexactly iw (Zw) = {(g, 5y (a,v)) | Gy (g, v) =
0} = L. Note that because £ = M X IRY, the above argument is independent of the
coordinate chosen (eg. C' iswell defined). With alittle care, the argument extends to the
case where E isanontrivial bundle over M.

Exercise 53.6 Show that, in the Darboux coordinate used above, the g—plane and the
p-plane of V both reduce to the q and p—plane (resp.) of C'/C*.

E. Further Applications Of Generating Phases

The symplectic theory of generating phases does not only provide a unifying packaging for
the different variational approaches to Hamiltonian systems. It can also serve as the basis
of symplectic topology, where invariants called symplectic capacities play acrucia role.
Roughly speaking, capacities are to symplectic geometry what volume is to Riemannian
geometry: they provide obstructions for sets to be symplectomorphic, or for sets to be
symplectically squeezed inside other sets. Viterbo ( 1992) uses generating phases to define
such capacities, in contrast to prior approaches by Gromov (1985) who uses the theory of
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pseudo—holomorphic curves. The basis of the definition of capacity in Viterbo ( 1992) isa
converse statement to Lemma 53.3:

Proposition 53.7 If Wy and Wy both generate h'(0%,), where h' is a Hamiltonian

isotopy, then after stabilization W1 and Wy are equivalent.

Inview of this, Viterbo is able to define a capacity for aLagrangian manifold L Hamil-
tonian isotopic to 03, by choosing minimax values of a given (and hence any) generating
phase for L.

In another work, Viterbo (1987) shows that a certain integer function called Maslov
Index on the set of paths in the Lagrangian Grassmannian is invariant under symplectic
reduction. It can be shown that the Lagrangian Grassmanian A(V') has first fundamental
group m1 (A(V')) = Z. Asmentioned in Chapter 6, we can roughly interpret this by saying
that A(V') hasa*“hole” and the Maslov index measures the number of turns a curve makes
around that hole. Now |et T/, be the generating phasesfor aHamiltonian isotopy i*. The set
dW,(E) isLagrangian in T* E and its reduction is the graph of h! (where 1V, isthe action
function for a decomposition of 4'). The Maslov Index in A(T*E) detects the change in
Morse Index of the second derivative of W;, whereas on the graph of A?, it detects a non
transverse intersection with the plane {(¢, p) = (Q, P)}. This can be used to give a neat
generalization to Lemma 29.4 and to explain the classical relationship discovered by Morse
between theindex of the second variation of the action function and the number of conjugate
points (see Milnor (1969) for the classical, Riemannian geometry case, and Duistermaat
(1976) for the more general convex Lagrangian case).



