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TWIST MAPS OF THE ANNULUS

4. Monotone Twist Maps
A. Definitions

The annulus can be defined as

A = S1 × [a, b],

where the circle S1 = IR/ZZ. We define the cylinder by:

C = S1 × IR.

As with maps of the circle, it is often less ambiguous to work with lifts of diffeomorphisms

of A. These are maps of the strip:

A := {(x, y) ∈ IR2 | a ≤ y ≤ b}

where x, thought of as the angular variable, ranges over IR (one can also consider more

general strips of the type {(x, y) | u−(x) ≤ y ≤ u+(x)} for two differentiable functions

u−, u+. The results are identical). The covering map proj : A 	→ A takes (x, y) to

(x mod 1 , y) and a lift of a map f of the annulus is a map F of the strip which satisfies:

proj ◦ F = f ◦ proj.

This implies in particular that F (x + 1, y) = F (x, y) + (n, 0), for some integer n. By

continuity, n does not depend on the point (x, y), nor on the lift F of f , it is called the

degree of f . In this book, we assume that f is an orientation preserving diffeomorphism of

the annulus. In this case, the degree of f is 1 and
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(4.1) F (x + 1, y) = F (x, y) + (1, 0)

for any lift F of f . Denoting by T the translation T (x, y) = (x + 1, y), Equation (4.1)

reads:

(4.2) F ◦ T = T ◦ F

Clearly, any map F of A which satisfies (4.2) is the lift of a map f of A of degree 1. We

say that f is induced by F .

Definition 4.1 LetF be a diffeomorphism ofA = IR×[a, b] and write (X(x, y), Y (x, y)) =

F (x, y). Let F satisfy:

(1) F preserves the boundaries of A: Y (x, a) = a, Y (x, b) = b.

(2) Twist Condition: the function y 	→ X(x0, y) is strictly monotone for each given x0.

(3) Area and Orientation Preserving: det DF = 1 or, equivalently, dY ∧ dX = dy ∧ dx.

(4) F ◦ T = T ◦ F
ThenF induces a map f on the annulus A which is called a (area preserving, monotone)

twist map of the annulus.

Exercise 4.2 Prove the above statements about the degree of a map and its lifts.

B. Comments on the Definition

Twist Condition.

F

●

●

(x0 , y) (X(x0 , y), Y(x0 , y))

X(x0 , y)
● x

x0

Fig. 4.0. The positive twist condition: as one moves up along a vertical fiber, the image
point moves right.
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Condition (2) implies that the map y 	→ X(x0, y) is a diffeomorphism between the

vertical fiber {x = x0} and its image on the x-axis (also called the base). In other words,

the image of the fiber {x = x0} by F forms a graph over the x-axis, as is shown in Figure

4.1.

We say that F is a positive twist map ( resp. negative twist map) if y 	→ X(x0, y)

is strictly increasing (resp. decreasing). Since in this book we consider differentiable maps,

we can express the monotonicity of the map y 	→ X(x0, y) by the equivalent derivative

condition:

(4.3)
∂X

∂y

= 0.

SinceA is connected, this derivative is either always strictly positive (giving a positive twist

map) or always strictly negative (for negative twist maps). Note that the lift of a positive

twist map “moves” points on the upper boundary ofA “faster” than on the lower boundary.

If F satisfies just the latter property, we say that it has the boundary twist condition. This

condition, much weaker than the twist condition in Definition 4.2 is all that is needed in the

Poincaré-Birkhoff theorem, see Section 7.

We now show that the twist condition implies that the map ψ : (x, y) 	→ (x,X) is

an embedding of A in IR2, i.e. a local diffeomorphism which is injective. Indeed, the

differential of ψ is given by :

Dψ =
(

1 0
∂X
∂x

∂X
∂y

)

whose determinant ∂X∂y is non zero by the twist condition. Henceψ is a local diffeomorphism.

To show that it is injective, suppose ψ(x1, y1) = ψ(x2, y2). Then, trivially, x1 = x2, and

y1 and y2 are forced to be equal because the map y 	→ X(x1, y) is strictly monotone. We

leave it to the reader to verify that, conversely, if ψ is an embedding of A, then the twist

condition is satisfied. We treat ψ as a change of coordinates. We will sometimes use the

notation ΨF for ψ, to emphasize its dependence on the map F .

Area Preservation, Flux and Symplecticity. The change of variable formula in multivari-

ate integration shows that the infinitesimal condition det DF = 1 implies Area(X) =

Area(F (X)) for any domain X in A (or for any Lebesgue measurable set X). We now

relate area preservation to another global notion: that of flux. For an area preserving map F

of A, define the function S : A → IR by:
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S(z) =
∫ z

z0

Y dX − ydx

where this path integral is over any curve joining a chosen base point z0 and the variable

z = (x, y). Using Condition (3), Stokes’ theorem and the fact that A is simply connected,

one shows that S is well defined onA (i.e. it is independent of the path of integration) and

that Y dX − ydx = dS (see Exercise 4.3 ). The flux of an area preserving map F of IR2

satisfying F ◦ T = T ◦ F is defined by:

Flux(F ) = S(Tz)− S(z)

Note that this makes sense, since, by Stokes’ theorem, S ◦ T − S is constant (see

Exercise 4.4). The flux of the map F can be seen geometrically in the cylinder C as the net

area comprised between an embedded circle wrapping once around C and its image by the

map f induced by F (see Figure 4.2). Indeed, S(β(1)) − S(β(0)) =
∫
β
Y dX − ydx =∫

F (β)
ydx−

∫
β
ydx for any curve β : [0, 1] 	→ A. Now take β such that β(1) = Tβ(0).

C

+
-

f (C)

Fig. 4.2. The flux of a cylinder map as the net area between an enclosing circle C and its
image f(C)

If F preserves the boundary of a bounded strip A, then f preserves the boundary circles

and the flux is by force zero. When no such curve is preserved for maps on the cylinder,

the flux can take any value in IR as the example Va(x, y) = (x, y + a) with Flux(F ) = a

shows. Since examples of this type show no recurrent dynamics, we exclude them from our
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study by always imposing, directly or indirectly, the zero flux condition on our maps. If F

has zero flux, then S ◦ T = S and thus S induces a function s on A such that

(4.4) f∗(ydx)− ydx = ds.

taking the exterior derivative on both sides of this equation, one gets d(f∗ydx − ydx) =

d2s = 0, and thus

(4.5) f∗(dx ∧ dy) = dx ∧ dy.

A map that satisfies this last equality is called symplectic, because it preserves the symplectic

form dx ∧ dy. In the present, 2 dimensional case the symplectic for is just the area form

(see Chapter 4 and Appendix 1 for generalizations to higher dimensions). A map f that

satisfies (4.4) is called exact symplectic. Hence (4.5) shows that exact symplectic implies

symplectic. We have shown that if F has zero flux, the map f it induces is exact symplectic.

Conversely, by Stokes’ theorem, iff is exact symplectic, any of its lifts has zero flux (Exercise

4.3). Hence the map Va of the cylinder defined above is not exact symplectic, even though

it is symplectic. Note that, in contrast, a symplectic map F of the plane is always exact

symplectic: as any closed form on the plane, F ∗(ydx)− ydx is exact (Poincaré’s Lemma).

Exercise 4.4 a) Using Stokes Theorem, show that if λ is a closed 1–form on a simply
connected domain of IR2, then the function S =

∫ z
z0
λ is well defined (i.e. does not depend

on the path of integration between z and z0) and that dS = λ. Apply this to λ = Y dX −
ydx.

b) What should a definition of S be if F preserves a smooth area form α(x, y)dy ∧ dx?

Exercise 4.5 a) Let F be an area preserving map of IR2 with F ◦T = T ◦F . Show that for
the function S defined above, S ◦ T − S is constant, and hence Flux(F ) is well defined.
(Hint. Given two points z1, z2 in A, take any two curves γ1, γ2, with γi joining zi and
Tzi, i = 1, 2. Take a curve β joining z1 and z2 and apply Stokes Theorem to the closed
curve β · γ1 · (Tβ)−1 · γ−1

2 and the form Y dX − ydx. )

b) Show that any lift of an exact symplectic map of the cylinder has zero flux.

c) (For those who know some DeRham cohomology) Prove that Flux(F ) is the result of
the pairing of the class [f∗ydx− ydx] in H1

DR(C) with the first homology class represented
by a circle going around the cylinder once in the positive direction (as usual, f is the map
induced by F ).
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C. Twist Maps of the Cylinder

The comments of the previous subsection motivate the following:

Definition 4.6 (Twist Maps of the Cylinder) Let F be a diffeomorphism of IR2 and write

(X(x, y), Y (x, y)) = F (x, y). Let F satisfy:

(1) F is isotopic to the Identity

(2) Twist Condition: the map ψ := (x, y) 	→ (x,X(x, y)) is a diffeomorphism of IR2

(3) Area Preserving & Zero Flux (Exact Symplectic): Y dX − ydx = dS for some real

valued function S on IR2 satisfying:

S(x + 1, y) = S(x, y).

Then F is the lift of a map f on the cylinder C which is called a monotone twist map of

the cylinder.

Condition (1) means that F can be deformed continuously into the identity through

a path of homeomorphisms of the cylinder. For maps of the closed strip IR × [a, b], this

condition clearly implies that the boundaries have to be preserved, and hence Condition

(1) here is the analog to Condition (1) in Definition 4.1. It will appear clearly in the next

section that the periodicity of the function S implies the periodicity F ◦ T = T ◦ F , i.e.

Condition (4) of Definition 4.1, which is necessary for F to induce a map of the cylinder.

In turn, the periodicity condition F ◦T = T ◦F implies that F is homotopic to Id. Finally,

the condition that ψ be a diffeomorphism here can be relaxed: one can require that ψ only

be an embedding, i.e. a diffeomorphism of IR2 into a proper subset of IR2, to the cost of

some (manageable) complications in the development of the theory.

Remark 4.7 There exist several other definitions of monotone twist maps in the literature.

Most noteworthy are the topological definitions, where the map is only required to be a

homeomorphism (and not necessarily a diffeomorphism). The twist condition takes different

forms with different authors. One commonly used is that the map y 	→ X(x, y) be monotonic

(Boyland (1988), Hall (1984), Katok (1982), LeCalvez (1991) ). A much milder condition is

considered in Franks (1988), where certain neighborhoods must move in opposite directions
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around the annulus. The preservation of area is sometimes discarded by these authors,

replaced by a condition that the map contracts the area, or that it is topologically recurrent.

The topological theory for twist maps is extremely rich and would be the subject of an entire

book. Our choice of working in the differentiable category stems from the possibilities of

generalization to higher dimensions that it offers.

Exercise 4.8 Show that a map of the bounded annulus which is homotopic to Id preserves
each boundary component (Note: the converse is also true, but much harder to prove).

5. Generating Functions and the Variational Setting

A. Generating Functions

In the previous section, we have seen that the lift F of a twist map of either the cylinder

or the annulus comes with a function S such that F ∗ydx − ydx = Y dX − ydx = dS

and S(x + 1, y) = S(x, y). The first equation expresses the fact that F preserves the area,

whereas the periodicity of S, expresses the zero flux condition.

On the other hand, the twist condition on F gives us a function ψ which we view as

a change of coordinates ψ : (x, y) 	→ (x,X). In the (x,X) coordinates(5) the equation

Y dX − ydx = dS(x,X) implies immediately that the functions −y(x,X) and Y (x,X)

are the partial derivatives of S:

(5.1) y = −∂S(x,X)
∂x

, Y =
∂S(x,X)

∂X

These simple equations are the cornerstone of this book. The function S(x,X) is called

the generating function of F in that from S we can retrieve F , at least implicitly: ψ−1

is given by (x,X) 	→ (x,−∂S∂x ) hence ψ is implicitly given by S. Thus F , which can be

defined by:

(5.2) F : (x, y) 	→ (X ◦ ψ(x, y),
∂S

∂X
(ψ(x, y)))

is also implicitly given by the function S and its partial derivatives. In Proposition 25.2 of

Chapter 4, we give conditions under which a function on IR2 is a generating function of

5 Remember that under the change of coordinates ψ, a function S changes according to
S �→ S ◦ ψ. Likewise, y �→ y ◦ ψ and Y �→ Y ◦ ψ.
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the lift F of some twist map. In 25.1 we also show that the correspondence between maps

and their generating functions (mod constant) is one to one and continuous. The following

exercise gives two necessary conditions for a function to generate a twist map.

Exercise 5.1 Show that if S(x,X) is the generating function of a positive twist map, then:

a) ∂12S(x,X) < 0

b) S(x+ 1, X + 1) = S(x,X)

Note that, in the litterature, the condition in a) is often taken as the twist condition

Exercise 5.2 Show that if F is the lift of a twist map of the annulus S1× [0, 1] then S(x,X)
can be interpreted as the area of the triangular shaped area with vertices (x, 0), (X, 0) and
(X,Y ) shown in Figure 5.1. (Hint. Show geometrically on this picture that Y = ∂S

∂X
. For

y = − ∂S
∂x

, consider the preimage of this triangular region by F ). Solve question b) of the
previous exercise using this geometric construction.

F
●

●
(X,Y)

(x,y)

S(x,X)S(x,X)

x X

Fig. 5.1. The generating function as an area

Exercise 5.3 Show that the inverse of a positive twist map with generating function S(x,X)
is a negative twist map with generating function −S(X,x).

B. Variational Principle

The lift F of a twist map gives rise to a dynamical system whose orbits are given by the

images of points of IR2 under the successive iterates of F . The orbit of the point (x0, y0)

is the biinfinite sequence:

{. . . (x−1, y−1), (x0, y0), (x1, y1), . . . , (xk, yk) . . .}

where (xk, yk) = F (xk−1, yk−1).
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Lemma 5.4 Let F be the lift of a monotone twist map of A or IR2 and let S(x,X)

be its generating function. There is a one to one correspondence between orbits

{(xk, yk) = F k(x0, y0)}k∈ZZ of F and sequences {xk}k∈ZZ satisfying:

(5.3) ∂1S(xk, xk+1) + ∂2S(xk−1, xk) = 0 ∀k ∈ ZZ.

The correspondence is given by: yk = −∂1S(xk, xk+1).

Proof . Let {(xk, yk)}k∈ZZ be an orbit of F . Since (xk, yk) = F (xk−1, yk−1) for all

integer k, Equation (5.1) implies:

yk = −∂1S(xk, xk+1) = ∂2S(xk−1, xk).

Conversely, let {xk}k∈ZZ satisfy Equation (5.3) and set yk = −∂1S(xk, xk+1), for all

integer k. Then, applying Equations (5.2) and (5.3) :

F (xk−1, yk−1) = F ◦ ψ−1(xk−1, xk) = (xk, ∂2S(xk−1, xk))

= (xk,−∂1S(xk, xk+1)) = (xk, yk).

��
Equations (5.3) can be interpreted as “discrete Euler-Lagrange” equations for some

action function on the space of sequences. Indeed, let F be the lift of a twist map of the

cylinder, and S(x,X) its generating function. Given a sequence of points {xN , . . . , xM},
we can associate its action defined by:

W (xN , . . . , xM ) =
M−1∑
k=N

S(xk, xk+1)

Corollary 5.5 (Critical Action Principle) A sequence {xN , . . . , xM} is the projection

of an orbit segment of F on the x-axis if and only if it is a critical point of W

restricted to the subspace of sequences {wN , . . . , wM} with fixed endpoints: wN =

xN , wM = xM .

Proof . Given a sequence {xN , . . . , xM}, introduce the sequences yk = −∂1S(xk, xk+1)

and Yk = ∂2S(xk, xk−1). In particular, F (xk, yk) = (xk+1, Yk). If W̃ is the restriction of

W to the set of sequences with fixed endpoints xN and xM , a direct calculation yields:
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dW̃ (xN , . . . , xM ) =
M−1∑
k=N+1

(Yk−1 − yk)dxk.

Hence {xN , . . . , xM} is a critical point forW if and only ifYk−1 = yk, which is a rephrasing

of Equation (5.3) , i.e. the sequence {(xN , yN ), . . . , (xM , yM )} is an orbit segment. ��

Exercise 5.6 Adapt Lemma 5.4 to a situation where the map F is a composition of different
twist maps F = Fk ◦ . . . ◦ F1 with generating functions S1, . . . , Sk. Note that you do not
need to assume that the Fi are either all positive twist or all negative twist. If they are,
one calls F a positive (resp. negative) tilt map.

C. Periodic Orbits

Let F be the lift of a twist map f of the annulus A, or cylinder C. Suppose that an orbit

{xk, yk}k∈ZZ of F satisfies, for some integers m and n:

(5.4) xk+n = xk + m

that is, Fn(xk, yk) = Tm(xk, yk). Then fn(proj(xk, yk)) = proj(xk, yk), and thus the

orbit of (x0, y0) is the lift of a periodic orbit of f . We say that a sequence {xk} satisfying

(5.4) is a (m,n) sequence. We denote by Xm,n the space of m,n sequences. Xm,n can be

seen as the n-dimensional affine subspace of IRn+1 of equation x1+n = x1 + m. Hence

Xm,n can be parameterized by the variables (x1, . . . , xn).

An orbit whose x projection is an (m,n) sequence is called a (m,n) orbit, or an orbit

of type (m,n). Hence, under n iterates of F , points in a (m,n) orbit get translated by

the integer m in the x direction. Down in the annulus, this can be interpreted as the orbit

wrapping m times around the annulus in n iterates. Conversely, it is not hard to see that any

periodic orbit of f of period n lifts to an (m,n) orbit of a lift F , for some integer m which

does depend on the choice of the lift F .

Proposition 5.7 A (m,n) periodic sequence x is the x-projection of a m,n periodic

orbit if and only if its is a critical point of

Wmn(x1, . . . , xn)
def
= S(xn, x1 + m) +

n−1∑
j=1

S(xj , xj+1).
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We will sometimes refer to Wmn as the periodic action. The proof of Proposition 5.7

is very similar to that of Corollary 5.5.

Exercise 5.8 Show by an example that the number m for a periodic orbit of a twist map
depends on the lift.

Exercise 5.9 Prove Proposition 5.7.

D. Rotation Numbers

Another interpretation of the numbers m,n in the lift of a periodic orbit is that the average

displacement per iterate in the x direction of the points in a (m,n) orbit is m/n. In general,

if {xk, yk}k∈ZZ is any orbit, one can try to compute the limits:

lim
k→+∞

xk
k

, lim
k→−∞

xk
k

If these limits exist, they are called respectively the forward and backward rotation

numbers. If they are equal, they are called the rotation number. Since limk→∞
xk
k =

limk→∞
xk−x0
k , the rotation number is an asymptotic measure of the average displacement

per iterate in the x direction along an orbit. Obviously, an (m,n) periodic orbit has rotation

number m/n. We also call rotation number of the point z = (x, y) the rotation number

of its orbit under F ; we denote this number by ρf (z).

Exercise 5.10 For those who know Birkhoff’s ergodic theorem, show that, if f is an area
preserving map of the annulus, ρf (z) exists for a set of points z of full Lebesgue measure

in A (Hint. lim xk−x0
k

= lim 1
k

∑k

1
(xj − xj−1) is the time average of some function. See

Section 49).

6. Examples
A. The Standard Map

As noted in the introduction, one of the most widely studied family of monotone twist maps

is the so called standard family, or standard map. We show how to retrieve explicitly the

standard map from its generating function. Let

S(x,X) =
1
2
(X − x)2 + V (x),
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where V is 1-periodic in x. Define

y = −∂1S(x,X) = X − x− V ′(x)

Y = ∂2S(x,X) = X − x.

then it is easily seen that

X = x + Y

Y = y + V ′(x),

That is, S generates the lift of a twist map:

F (x, y) = (X,Y ) = (x + y + V ′(x), y + V ′(x)).

Taking as “potential” V the 1-parameter family k
4π2 cos(2πx), we do indeed get the standard

family:

Fk(x, y) = (x + y − k

2π
sin(2πx), y − k

2π
sin(2πx))

When V ≡ 0 (or k is equal to 0 in the standard family), the generating function is 1
2 (X −

x)2 = 1
2Dis2(x,X) and the map it generates is the shear map:

F0(x, y) = (x + y, y)

which is completely integrable, in the sense that each horizontal line {y = y0} (covering a

circle in C) is invariant under F0, and that the restriction of F0 to {y = y0} is a translation:

x 	→ x+ y0 (lift of a rotation of angle 2πy0). We will see in Chapter 7 that F0 is the time 1

map of the geodesic flow for the Euclidean metric on the circle.

As noted in the introduction, an important question about the standard family (or any

set of maps containing a completely integrable one) is: which features of F0 survive as one

perturbs the parameter k away from 0?

Exercise 6.1 Check that the standard map satisfies all the axioms of twist maps of the
cylinder.
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B. Elliptic Fixed Points of Area Preserving Maps

Twist maps appear naturally in Hamiltonian systems when one consider the Poincaré return

map around a periodic orbit. We will learn more about these return maps in Section 40.

For now, it will suffice to say that, in an autonomous Hamiltonian system with two degrees

of freedom, a small surface transverse to a periodic orbit gives rise to an area preserving

map. For more on the use of these maps in Celestial mechanics, which was their original

motivation, see Siegel & Moser (1971).

z

R(z)

z*

Fig. 6.1. A Poincaré section around the periodic orbit of the point z∗, with the return
map R. The ambient 3-D space in this picture represents the energy level of a 2 degree of
freedom Hamiltonian.

Let f be a symplectic C∞ diffeomorphism in a neighborhood of 0 in IR2, which has 0 as

a fixed point. Since det Df(0) = 1, the two eigenvalues are either real λ, 1/λ or complex

λ, λ and conjugated on the unit circle. In the first case, we say that 0 is a hyperbolic fixed

point, in the second case that it is an elliptic fixed point (see Appendix 1). If f is the return

map of a periodic orbit based at z∗ as above, the periodic orbit is called elliptic or (resp.

hyperbolic) when z∗ is an elliptic (resp. hyperbolic) fixed point for R.

Suppose now that 0 is an elliptic fixed point and that Df(0) has eigenvalues λ = ei2πα

and λ (i.e. Df(0) is a rotation of angle α). Suppose moreover that λn 
= 1 for n in {1, . . . , q}
for some integer q. We can make a change of variable z = x+ iy, z = x− iy and write the

Taylor expansion of order n of f(z) in these coordinates:

f(z) =
n∑
k=1

Rk(z, z) + o(|z|n)
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Theorem 6.2 (Birkhoff Normal Form) There exists a symplectic ( for the form dx∧dy),
C∞ diffeomorphism h, defined near 0 and having 0 as a fixed point such that:

h ◦ f ◦ h−1(z) = λzei2πP (zz) + o(|z|q−1)

or, in polar coordinates (z = rei2πθ):

f̃ = h ◦ f ◦ h−1
(r, θ) =

(
θ + α + P (r2) + o(|r|2n), r + o(|r|2n)

)

where P (x) = a1x+ . . .+amxm with 2m+1 < q. Each of the “Birkhoff invariants”

ak is generically non zero.

For a proof of this, we refer to LeCalvez (1990) . Generically means that it is satisfied on

a set of maps which is the intersection of countably many dense and open sets of C∞ sym-

plectic maps. There are also versions (see Moser (1973) ) that require less differentiability.

The point of this theorem is that, if we make the generic assumption that some ak is non

zero, the map f satisfies a twist condition in a neighborhood of r = 0 (for r > 0). Note that,

in polar coordinates, the map f̃ preserves the form rdθ∧dr, (which is only non–degenerate

for r > 0 . By making a further change of variables that preserves the vertical foliation

{x = ct}, one can get a map that preserves dθ ∧ dr (see Chenciner (1985) ). This last map

preserves no boundaries. However, one can extend it to a boundary preserving map of a

compact annulus. The main results in the theory can often be made precise enough to tell

apart the dynamics of the original map from that of the extension. Hence the dynamical

study around conservative fixed points reduces to the study of twist maps.

C. The Frenkel-Kontorova Model

The variational approach in Section 5 was encountered by Aubry (see Aubry & Le Daeron

(1983)) while studying the Frenkel-Kontorova model in condensed matter physics. In this

model, one considers a chain of particles whose nearest neighbor interaction is represented

by springs (with spring constants 1). If xk represents the location of the kth particle of

the chain, the potential for the interaction between the kth and (k − 1)th particles is thus
1
2 (xk − xk−1)2. The chain of particles lies on the surface of a linear crystal represented by

a periodic potential V (x) = a/4π2cos(2πx) (a is some positive parameter).
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x-1 x2x-4 x-2 x-3 x4x3x1x0

Fig. 6.3. The Frenkel–Kontorova Model.

The kth particle is in equilibrium whenever the sum of the forces applied to it is null:

(6.1) (xk+1 − xk)− (xk − xk−1)−
a

2π
sin(2πxk) = 0

This equation can be rewritten dW = 0 whereW , the energy of the configuration of particles

is given by :

W =
∑
k

S(xk, xk+1) =
∑
k

1
2
(xk − xk+1)2 +

a

4π2
cos(2πxk).

We recognizeS as the generating function of the Standard Map. Hence equilibrium states of

the Frenkel-Kontorova model are in 1-1 correspondence with orbits of the Standard

Map.

D. Billiard Maps

We revisit here the example of the billiard map presented in the introduction. Consider the

dynamics of a ball in a convex, planar billiard. This ball is subject to simple laws : it travels

in straight lines between two rebounds and the incidence and reflexion angles are equal at

a rebound. We reproduce here a figure of the introduction:

x

X

θ Θ

Fig. 6.4. In a convex billiard, the point x and angle θ at a rebound uniquely and contin-
uously determines the next point X and incidence angle Θ.
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Let x be the arc length coordinate with respect to a given point on the boundary C of

the billiard, which we orient counterclockwise. Let y = −cos(θ) where θ is the reflexion

angle of a point of rebound. Because of the convexity of the billiard and the law of reflexion,

a pair (x, y) at a rebound determines its successor (X,Y ) continuously, and vice versa.

Hence we have constructed a homeomorphism f : (x, y) 	→ (X,Y ) of the (open) annulus

S1 × (−1, 1) which is actually a Ck−1 diffeomorphism if the boundary is Ck (LeCalvez

(1990) ). We call f the billiard map. If we increase y while keeping x fixed, the convexity

of C implies that C(X) moves in the positive direction along C. Thus:

(6.2)
∂X

∂y
> 0

and the billiard map satisfies the positive twist condition.

We now show that f is exact symplectic by exhibiting a generating function for it. Let

S(x,X) = −‖C(X)− C(x)‖ then, since C ′ = dC
dx is a unit tangent vector:

(6.3)

∂S

∂x
=

1
S(x,X)

[C ′(x).(C(x)− C(X))] = −y

∂S

∂X
=

−1
S(x,X)

[C ′(X).(C(X)− C(x))] = Y

which is to say:

(6.4) Y dX − ydx = dS(x,X)

Thus, for the billiard map, the action function W =
∑

S(xk, xk+1) is nothing more

than (minus) the length of the trajectory segment considered. For instance, periodic trajec-

tories correspond to polygons in a given m,n-type who are critical points for the perimeter

function. See the introduction for some illustrations.

Exercise 6.3 Show that the billiard map for the round billiard is given by f(x, y) =
(x+ 2 cos−1(−y), y).

Exercise 6.4 Show that, for the billiard map, the equation dW = 0 expresses the equality
between the angle of incidence and the angle of reflexion at each rebound.
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7. The Poincaré-Birkhoff Theorem

In this section, we give a complete proof of the Poincaré-Birkhoff theorem, also called

Poincaré’s last geometric theorem. We refer to Section 3 for some motivation for this

theorem. We follow here the proof of LeCalvez (1991) . Even though this proof uses material

scattered in various places in the book, in a first, light reading, it can serve as a good

motivation to the methods used throughout the book. We use here some material on circle

diffeomorphisms, which the reader can look up in the appendix to Chapter 2. We also use

topological techniques of Conley for the estimation of number of critical points of the action

function from Appendix 2. Finally, this proof was the inspiration behind Theorem 43.1.

We consider a map f of the compact annulus A = S1 × [0, 1] and its lift F to A =

IR× [0, 1] . We do not assume that f is a twist map, but rather that F satisfies the boundary

twist condition: the restriction of F
∣∣
u±

of F to each boundary component u− = S1×{0},
u+ = S1 ×{1} which are lifts of circle diffeomorphisms, have rotation numbers ρ± which

satisfy ρ− < ρ+ (See Section 13 for circle homeomorphisms and their rotation numbers).

Theorem 7.1 (Poincaré-Birkhoff) The lift F of an area preserving map of A which

satisfies the boundary twist condition. If m/n ∈ [ρ−, ρ+], and m,n are coprime then

F has at least two m,n–orbits. In particular, if ρ− < 0 < ρ+, then F has at least

two fixed points.

Proof . We first derive the general case from the special case. Suppose F
∣∣
u±

has rotation

numbers ρ± and that m/n ∈ (ρ−, ρ+). Consider the map G(·) = Fn(·) − (m, 0). Then

G is area preserving and has new rotation numbers on the boundary n(ρ− −m/n) < 0 <

n(ρ+ −m/n). Hence G has at least two fixed points and they correspond to m,n periodic

orbits of F . The proof of existence of fixed points of LeCalvez (1991) is based on the

following lemma:

Lemma (Decomposition) 7.2 Any area preserving map f of a bounded annulus A

isotopic to the Identity, can be written as a composition of twist maps:

f = f2K ◦ . . . ◦ f1
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Proof . It is a general fact (an open-closed argument, see Exercise 7.4) about topological

groups that, given any neighborhood U of the neutral element of the group, any element

in the connected component of the neutral element can be written as a finite products of

elements of U . Let f0 be the shear map f0(x, y) = (x + y mod 1, y) of the annulus. Since

the set of maps satisfying the twist condition is open, there is a neighborhood U of Id in the

set of area preserving maps of A which is such that f ∈ U ⇒ f−1
0 ◦ f is a negative twist

map . Hence any f in U can be written as: f = f0 ◦ (f−1
0 ◦ f), a composition of two twist

maps (one positive, the other negative). The group of area and orientation preserving maps

of the annulus being connected (see Exercise 7.4), any map in that group can be written as

a finite combinations of f as above. ��
Let F : A → A be a lift of an area preserving map f of the compact annulus A.

Applying the previous lemma, we write F = F2K ◦ . . . ◦ F1 where Fk lifts a twist map fk.

Let Sk be the generating function for Fk. We let

W0(x) =
2K∑
k=1

Sk(xk, xk+1), x ∈ X0,2K = {x ∈ IR2K+1 | x2K+1 = x1}.

Proposition 5.7 and its extension in Exercise 5.9 show that the critical points of W0

correspond to periodic orbits under the successive fk’s, and hence to fixed points of f . To

find these critical points, we study the gradient flow ζt of−W0, solution of ẋ = −∇W0(x).

We exhibit a compact set P of X0,2K which must contain critical points for the action. The

set P is an isolating block in the sense of Conley, i.e. a compact neighborhood whose

boundary points immediately exit P in small positive or negative time (see Appendix 2).

This condition on the boundary implies that the maximum invariant set for ζt is in the

interior of P (hence the term “isolating”).

Lemma 7.3 Whenever ρ− < 0 < ρ+, the set

P = {x ∈ X0,2K | 0 ≤ −∂1Sk(xk, xk+1) ≤ 1,∀k ∈ {1, . . . , 2K}}

is an isolating block for the negative gradient flow ζt of −W0. Moreover,

P � S1 × [0, 1]K × [0, 1]K−1

with exit set P− = S1 × [0, 1]K × ∂([0, 1]K−1)
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Proof . Setting yk = −∂1Sk(xk, xk+1), the faces of the boundary ∂P of P can be written

as {yk = 0} or {yk = 1} for k ∈ {1, . . . , 2K}. The behavior of the negative gradient flow

at a face yk = 1, say, is given by the sign of dykdt = ẏk:

(7.1) ẏk = − d

dt
(∂1Sk(xk, xk+1)) = −∂11Sk(xk, xk+1)ẋk − ∂12Sk(xk, xk+1)ẋk+1.

We let Yk = ∂2Sk(xk, xk+1), i.e. Fk(xk, yk) = (xk+1, Yk). With this notation −∂W0
∂xk

=

Yk−1 + yk, and Equation (7.1) reads:

(7.2) ẏk = ∂11Sk(xk, xk+1)(Yk−1 − yk) + ∂12Sk(xk, xk+1)(Yk − yk+1)

and the invariance of the boundary component IR × {1} of A under Fk tells us that, since

yk = 1 then Yk = 1 as well. Since yk±1 ≤ 1 and hence Yk−1 ≤ 1,

(7.3) Yk−1 − yk ≤ 0, Yk − yk+1 ≥ 0.

Assume that k is even. Then fk is a positive twist map and ∂12Sk(xk, xk+1) < 0. We

need to determine the sign of ∂11S(xk, xk+1) on the subset {yk = 1} of ∂P . On this set,

we have xk = a(xk+1) where a is the restriction of F−1
k to y = 1, this latter set being

parameterized by x. Since a is the lift of an orientation preserving circle diffeomorphism,

we have a′(x) > 0 for all x. We differentiate the equation 1 = ∂S(a(x), x) with respect to

x :

0 = a′(x)∂11S(a(x), x) + ∂12S(a(x), x)

from which we deduce that ∂11S(x, a(x)) > 0. Going back to Equation (7.2) , we see that

if we are on the face yk = 1 but away from its boundary (i.e., in particular, yl 
= 1, l =

k− 1, k + 1), then the inequalities in (7.3) are strict, and we get ẏk < 0: the flow is strictly

entering P through this face, or exiting it in negative time.

If we are on an edge of the face yk = 1, the inequalities (7.3) may be equalities. But

this cannot be the case for all k: if it were, (xk)k∈ZZ would be critical and (xk, yk) would

be a fixed point for f on the boundary, which is impossible since then the rotation number

ρ+ would be 0, a contradiction to ρ− < 0 < ρ+. So we can assume, say Yl−1 − yl < 0,

yl = yl+1 = . . . = yk = 1, in which case (7.2) tells us that ẏl 
= 0 and the flow exits P in

either positive or negative time at this point of ∂P .

The proof of the case k odd is exactly similar. We let the reader show in Exercise 7.5

that P and its exit set P− have the topology advertised. ��
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This Lemma puts us in a situation which has become classic since the work of Conley &

Zehnder (1983) in the field of symplectic topology. It can be schematized by the following

diagram:

✕

S
1 × [0, 1]K × [0, 1]K−1

Fig. 7.2. The gradient flow at the boundary of the isolating block P

Given this topological behavior of the gradient flow, Proposition 62.4 tells us that W0

must have at least cl(S1) = 2 critical points. This completes the proof of the Poincaré-

Birkhoff Theorem. ��

Exercise 7.4 Fill the arguments in the proof of Lemma 7.2 .
a) Show that the set of products of elements in any neighborhood of the neutral element in
a topological group contains the connected component of the neutral element [Hint. Show
that this set is open and closed].
b) Show that the set of continuous area and orientation preserving maps of the annulus
S1× [0, 1] is connected [Hint. Show that the set of lifts of such maps is in fact convex. You
might want to work with C1 maps first, and argue by density for C0 maps.]

Exercise 7.5 Show that the isolating block P is homeomorphic to S1 × [0, 1]K × [0, 1]K−1.


