Appendix 2

SOME TOPOLOGICAL TOOLS

In order to estimate the minimum number of periodic orbitsfor a symplectic twist map
or a Hamiltonian system, we need an estimate on the minimum number of critical points
for the energy function of the corresponding variational problem. Estimating the number of
critical points of functions on compact manifolds is the jurisdiction of Morse Theory and
Lyusternick-Schnirelman Theory. Given the gradient flow of areal valued function f on a
compact manifold M, Morse Theory rebuilds M from the unstable manifolds of the critical
pointsof f. Thecombinatorial dataof thisconstruction givesarel ationship between the set of
critical points and the topology of M, in the guise of its homology. Unfortunately, the space
on which the energy function W is defined is not compact. However, it usualy is a vector
bundle over acompact manifold M, and reasonably natural boundary conditions on the map
or Hamiltonian system trandates into some conditions of “asymptotic hyperbolicity” for
W. Thisis a situation where Conley’s theory, which studies the relationship between the
recurrent dynamics of general flows and the topology of (pieces of) their phase spaces was
brought to bear with great success.

For the reader who has no background in algebraic topology, we start in Section 60 by
outlining, following some examples, an easy way to compute the homology of a manifold
by decomposing it into cells. We then illustrate Morse theory in Section 61, by considering
the cells given by the unstable manifolds of critical points of areal valued function on the
manifold. We hopethat thiswill give such areader at least aflavor of therest of this chapter.
Starting in Section 62, we assume familiarity with algebraic topology. We give some of
the basic definitions of Conley’s theory and state results on estimates of number of critical
points in isolated invariant sets for gradient flows. In Section 63, we prove most of these



260 Appendix 2: TOPOLOGICAL TOOLS

results. In Section 64, we apply these results to functions on vector bundles whose gradient
flow are asymptotically hyperbolic.

60.* Hands On Introduction To Homology Theory

Toamanifold, or to certain subspacesof it, wewant to associate someal gebrai c objectscalled
homology groups that are invariant under homeomorphisms or other natural topological
deformations. Usually, the best way to cal culate these groups (but not the best way to show
their invariance properties), isto decompose the spaces studied into well understood pieces,
and then define the groups from the combinatorial data describing how these pieces fit
together. In this introduction we decompose spaces into cells, which are discs of different
dimensions, and show how to compute cellular homology.

A. Finite Cell Complexes

Given atopological space X (e.g. adifferentiable manifold) we can construct a new one by
attaching a cell of dimension n. Thisis done by choosing an attaching map f from the
bounding sphere $™ ! of the cell D™ (adisk of dimension n) to X. The new space, denoted
by X Uy D™ isgiven by theunion of X and D™ where each point of 9D™ isidentified with
itsimageby f in X. Thetopology on X Uy D™ isthat of the quotient X U D" /{z ~ f(x)}.

Example 60.1 One can construct the sphere $2 by attaching the disc D? to apoint p. The
space X = {p} isamanifold of dimension O, and the attaching map f sends each point
of the boundary circle of D? to p. One can also construct a sphere by attaching a disk to
another one (what is the attaching map?). These constructions have obvious generalization
to higher dimensions.

A cellular space is a space built by successively attaching a finite number of cells,
starting from a finite number of points (cells of dimension 0). If in this process each cell
is attached to cells of lower dimensions, the space obtained is called a finite cell complex
or CW complex. The union of all cells of dimension lessthan & in afinite cell complex is
called the k—skeleton. Thusthe k + 1-skeletonisbuilt by attaching cellsof dimension k + 1
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to the k—skeleton. The dimension of the cell of maximum dimension in a cellular space X
(and hence of a CW complex) is caled the dimension of X.

Examples 60.2 Figure 60.1 shows how the torus can be decomposed (thisis not the only
way!) into afinite cell complex: its0—skeleton isthe point z. To get the 1-skeleton we attach
both extremities of the “equator” a and the “meridian” b to z. The attaching maps send the
boundaries —1 and 1 of the 1—<ellsa = [—1, 1] = b to the point z. Finally, the 2—skeleton
is obtained by attaching the disk D (stretched to a square) to the 1-skeleton asindicated by
the“flat” picture of thetorus. Note that the 1-skeleton |ooks like a* bouquet of two circles’.

Cells
dim: 0 1 2

dim: O 1 2
Skeletons

Fig. 60.1. The torus T? as a finite CW complex.

One can generalize this construction to surfaces of any genus g (sphereswith g handles)
by gluing a 2 cell to a polygon with 4¢ sides and identifying all vertices to a single point,
and edges two by two as indicated by their name and orientations on the following figure
(g is2 here):
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Fig. 60.2. The double torus (surface of genus 2) as a finite CW complex. Identify edges
according to their names and orientations, and identify all vertices to one point. When
cutting the octagon in half through the curve v we obtain two handles, which are tori with
a disk (bounded by the curve 7) removed in each. Any compact surface can be described
with this method.

o4

More generally, we will show in the next section that any compact manifold is homeo-
morphic to afinite cell complex.

Exercise 60.3 Decompose $",T™,IRIP" and the Klein bottle into finite cell complexes.
Remember that IRIP" can be defined as ID"/ ~, where the relation ~ identifies any two
antipodal points on the boundary of the n—disk ID"™. The Klein bottle is [~1,1]?/ ~ where

(1,y) ~ (-1,—y) and (z,1) ~ (x,—1).

B*. Cellular Homology

Bouquets of spheres. When we “crush” the (k-2)—skeleton X of afinite cell complex
X to apoint inside the (k-1)-skeleton X, the boundary of each (k-1)-cell crushes to
that point. Hence each (k-1)-cell of X _, becomes a (k-1)-sphere in X1/ X 5. All
these spheres meet at exactly one point, where the crushed X, collapsed: we say that
Xp—1/Xk_o isabouquet of spheres. The attaching map f of a k—cell to X, givesrise
toamap f: $¢ 1 — Xy—1/Xk—2, by composition with the quotient map. Hence we have
amap f from a sphere of dimension & — 1 to a bouquet of spheres, all of dimension & — 1.
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Digression on degree and homotopy. Any continuous map from a sphere S; to a sphere
S, of same dimension comes equipped with a degree which, informally, is an integer
which measures the number of times S; “wraps around” S, under this map. This integer
can be negative, as we keep track of orientation. Since the proper topological definition of
degree requires homology (which we arein the process of defining), we restrict ourselvesto
differentiable maps. The degree of a differentiable map f between two manifolds of same
dimension is given by:

(60.1) deg(f) = Z 1 (sign det Df,)
zef~1(z)

where z isany regular value of f, i.e. no determinant in the above sumis zero (by Sard’'s
theorem, almost all values of asmooth map areregular). It turnsout that the above number is
independent of the (regular) point z. The degree of amap is aso invariant under homotopy
of the map. [ Two continuous maps f, and f; between the manifold M and the manifold N
are homotopic if there is acontinuous map (called homotopy) F : [0,1] x M — N such
that 7(0,z) = fo(z), F(1,z)= fi(z)fordl zin M].

Back to horticulture. The attaching map f : $* ™' — X},_/X},_, hasamultiple degree:
on each sphere \S; in the bouquet one can compute the oriented number of preimages under
f of aregular point as in (60.1) (without loss of generality, we can assume that f is
differentiable except at the common point of the spheres). Suppose that ¢ ', ... i ",
denote the (k — 1)—cells of the cell complex and cf, ..., ¢k, its k-cells. We now form an
N}, x Ni_1 integer matrix 5, whoseentry 9y (i5) isthe degree of the attaching map from dc¥
to the jth sphere of the bouquet, i.e. ¢}~ /och~". Thematrices 9y, for k € {1, ..., dimX}
essentially give all the combinatorial datadescribing how the complex X is pieced together

from our collection of cells.

Chain complexes. We now want to view the matrices 0, as those of linear maps between
finite dimensional vector spaces, or modules. To do this, one thinks of c%, .. ., levk asthe
basis vectors of an abstract vector space (or free module) C}, whose elements are formal
sums of the form

Ny,
_ Lk
c= E ajc;,
1
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where a; is an element of some “coefficient” field (or ring) K (usually Z,,Z, Q) or IR).
Hence C, isgenerated by the k-cellsand dimC, = N;.. For convenience, we definedy = 0
on ().

Lemma 60.4

(60.2) ak,1 o} 8k =0.

The proof of this crucial lemma, which we will not give here (see, eg. Dubrovin & al.
(1987) ) usually uses the long exact sequence of atriple and apair in smplicial homology.
A chain of maps and vector spaces (or modules):

On, 0
Cn—>Cn_1—>...Ck—k>ck_1—>...—>C0

satisfying (60.2) iscalled a chain complex.

Definition 60.5 The kth homology group of thefinite cell complex X with coefficientsin
aring or field K isgiven by:

Hk(X,K) = Ker 8k/Im 8k+1.

where, by convention, 9y = 0 = 0,41

This definition makes sense since, by Lemma 60.4, Im 011 C Ker Ok. Note that
Hy(X) = 0 whenever k > dim X or k < 0, since for such &, X, = 0.

Homology Of The Circle. The circle §! is a CW complex: we start with a point p and
attach to it an interval I = [0, 1]; the boundary points of I become identified to p under
the attaching map. Using IR as coefficients in our chain complex, we get Cy = IR.p =
R,C; = R.I = IR. The map 9; = 0: p has the two preimages {0} and {1} under the
attaching map, but they come with opposite orientations under the orientation induced by

1. Hence the degree of the attaching map is 0 here and the homology of the circleis given
by:
Kifk=0,1,

1 _
Hy (S, K) = { 0 otherwise
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Homology Of The Torus. Figure 60.1 above gives the generators for a chain complex for
thetorus. Ch =IR-z2,C1 =IR-a® R -b,Cy =R - D. All the boundary mapsare0in
this case: 01a = 0 because it geometrically yields z twice but with opposite orientation.
Likewise for 0,b. Asfor 9D = a+ b — a — b = 0, again due to orientation. Hence
Ker Oy /Im 041 = Cy for k = 1,2, 3. We have shown:

R k=0,2

Hy(T? R) = R? k=1
0 otherwise.

Clearly, thisresult remains valid if we replace IR by any coefficient ring K.

Homology Of The K lein BottleA less trivial example is given by the Klein bottle. This
non orientable surface is atorus with atwist and it cannot be embedded in IR*. We build it
with the same cells z, a, b and D as the torus. The only change occurs in the definition of
0s: instead of gluing D to two copies of b in opposite orientation, we give them the same
orientation (according to that of the boundary of D):

Zo—)—o
D

7—»—o
a z

Fig. 60.3. A cell decomposition for the Klein bottle. The only difference with that of the
torus is the orientation of one of the segments b.

Let us use the integers Z as our coefficient ring. As aresult of the orientation change,
5 and Ker 0, = {0}. From this we immediately get that
Hs(Klein,Z) = 0. Asinthecaseof thetorus, 0, = 0sothat Ker 9 = Cy = a-Z®b-Z.
SinceIm 0, = {0} -a®2Z-b, Hi(Klein,Z) = Z & Z-. Asin the case of the torus,
Hy(Klein,Z) = Z (in fact, the rank of H, gives the number of connected components
of a manifold). Now let’s reexamine the above computation with coefficients K = Z,
instead: the map d» = 0 in this case since 2=0 in this ring. Thus, in this case we are
back to the same situation as with the torus: Hy(Klein,Zy) = Zy, Hy(Klein, Zy) =
Zy B Zs, Hy(Klein, Zs) = Z,. Findly, let’schoose K = IR. Since Ker 02 = Cy inthis

the matrix of 0, is now
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case again, Ho(Klein,IR) = R. Since R/2IR = R/IR = {0}, H;(Klein,R) = IR. As
before Hy(Klein, R) = IR.

S ome genera | p rop erties a fiditidne rela ted to homologylLet X be a compact
manifold of dimension n. Aswe will see in next section, it can always be decomposed into
afinite CW complex.

edimHy, (M, R) = rank Hy,(M,Z) = by isthe k' Betti number of M.

o> 1_,(—)*by, = x(M) isthe Euler characteristic of M.

eNeither b, nor x(M ) depend on the chain decomposition chosen for M.

eb gives the number of connected component of M.

ob,, = 1if M isorientable, b,, = 0 if M isnot orientable.

e The importance of homology stems in great part from its invariance under topological
equivalences. Onetopol ogical equivalenceisthat of homeomorphism. A coarser equivalence
(see Exercise 60.7) is that of homotopy type. Two topological spaces M and N have the
same homotopy type if there are continuous maps ¢ : M — N, ¢ : N — M such that
¢ o1 and i o ¢ are homotopic to the Identity maps of M and N respectively. In other words
M can be deformed into NV and vice-versa.

Theorem 60 .61f the two manifolds M and N are homeomorphic, or have the same
homotopy type, then they have same homology: H.(M) = H.(N) (the star x stands

for any integer).

C . C ohomology

Roughly speaking, cohomology is dual to homology. For readers of this book, it might be
easier to seeit through differential forms, which are dual to chains of cellsin the sense that
theintegral < ¢,w >= [ w of aformw onachain cisalinear, real valued function of the
variable ¢ (itisaso linear in w). The duality bracket given by integration also satisfies:

<0cw>=< ¢, dw >

whered isthe exterior differentiation onforms. Thisformal equality isageneral requirement
for defining cohomology. Inthecase of formsitissimply given by Stokes' Theorem. Finally,
we can define the cochain complex
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x d1 o~k do

0— C;—=Ci—= .d—">C’:L—>O

where C; = A¥ is the vector space of k—forms and dy, is exterior differentiation. As with
homology, we can define the DeRham cohomology group as.

Hk(M,IR) = Ker diy1/Im dg,

i.e. this cohomology is the quotient of closed forms over exact forms. One notable differ-
ence between homology and cohomology is the direction of the arrows in the complexes
that defines them. Another notable difference, which makes the use of cohomology often
preferable, is the existence of a natural product operation in cohomology, called the cup
product. In DeRham cohomology, this cup product takes the form of wedge product of the
forms:

[wl] U [u)g] = [w1 VAN CUQ]

where the notation [w] denotes the class of the closed form w and U the cup product.
There are many different ways to define conomology, but it can be shown that (given some
normalization requirements), they all give the same result on compact manifolds. Poincaré,
for instance, introduced cohomology (not under that name) by geometrically constructing
adual complex to atriangulation (a special CW chain decomposition). In the next section,
where unstable manifolds of critical points of a Morse function provide us with a chain
decomposition, the dual decomposition can be taken to be that of stable manifolds.

E x erc ise 6(Lbw that the circle and the cylinder have same homotopy type but are not
homeomorphic.

E x erc ise 60Udng Exercise 60.3, compute the homology of $", T", IRIP".

61 .* M orse Theory

We now show how any compact manifold can be described as a cellular space, with cells
given by the unstable manifolds of the critical points of a Morse function. This immedi-
ately yields arelationship between critical points and homology, in the guise of the Morse
Inequalities. We first define some of these terms. For more details on the material in this
section, the reader should consult Milnor (1969) .
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G radientFlow A nd M orse FLang¢ tidds— IR be a differentiable function on
amanifold M. A critical point for f isapoint z a which the differential of f is zero:
df (z) = 0. If f istwice differentiable, the critical point z is called nondegenerate if

82

wherethis second derivativeistaken with respect to any local coordinates« around z on M.

(61.1) det

Thefunction f isa Morse function if al itscritical pointsare nondegenerate. One can show
that, on any given manifold, Morse functions are generic in the set of twice differentiable
functions (see eg. Guillemin & Pollack (1974) or Milnor (1969) ). Note that Condition
(61.1) isindependent of the coordinate system. Indeed, at a critical point z,
*f(z) 0x'0%f(z) Oy
Oy? oy 0x? Ox
Thislast formulaal soimpliesthat the number of negative eigenval ues of thereal, symmetric
‘928{; ) does not depend on the coordinate system chosen around the critical point
z. This number is caled the Morse index of z. Qualitatively, the level set portrait of a
function around a nondegenerate critical point is entirely determined by the index of the

critical point. Indeed:

matrix

L emma 61 .1 (M orsel dmtmabe a nondegenerate critical point for a function

f on a manifold of dimension n. There is a coordinate system x around z such that:

f@)=fz) — a2 — .~} tad 4. 4R

We refer the reader to Milnor (1969) for a proof of this lemma, which generalizes the
diagonalization process (Gram-Schmidt) for bilinear forms. Sincethe Morse Lemmaclearly
impliesthat the critical points of a Morse functions are isolated, we have:

C orollary 61 2 Morse function on a compact manifold has a finite number of

critical points.

The gradient flow of afunction f isthe solution flow for the O.D.E.:

(61.2) 2= -Vf(2).
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The gradient V f is defined here by (Vf,.) = df(.), where the brackets denotes some
chosen Riemannian metric (on IR or T", one usually uses the dot product). f decreases
along the flow:

d 2
5/ (F() = —1Vf(=(t)}" <0

with equality occurring exactly at the critical points. The eigenvectors corresponding to the
negative eigenvalues of % span a subspace of T, M which is tangent to the unstable
manifold at z of the gradient flow. [We remind the reader that the unstable manifold of a
restpoint for aflow ¢! isthe manifold W*(z..) of pointswhose backward orbit is asymptotic
to the restpoint z,: W*(z,) = {z | lim;_._ ¢'(2) = z.}]. In the case of the gradient
flow of aMorsefunction, the unstable manifold of acritical pointistangenttothex, ..., zx
plane given by the Morse Lemma. Hence the Morse index of a nondegenerate critical

point of a Morse function is the dimension of its unstable manifold.

R ema rk 6IN@te that if the metric chosen to define the gradient is the euclidean one in
the Morse coordinate chart, the (z1, ..., ) planeisitself the (local) unstable manifold of
the critical point, at least in that chart. This can always be arranged, by alocal perturbation
of the metric, and we will assume from now on that thisis the case.

Top ology Of S ub lev el SThegist of Morsetheory consistsin studying how the topology
of the sublevel set:

M* ={x e M| f(z) < a}

changes as a varies.

Theorem 61 .4 If there are no critical points in f~'[a,b], then M® and M® are

diffeomorphic. The inclusion of M® in M® is a deformation retraction.

Proof. Deform M? into M® by flowing down the trajectories of the gradient flow, with
appropriate speed (controlled by reparameterization of the flow) and during an appropriate
timeinterval. Thisis possible aslong as there are no critical valuein [a, b]. O
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Mbli
ma

Fig. 61.1. Deformation of a sublevel set M? into the sublevel set M when there are no
critical points in f~'[a, b]. The lines with arrows represent trajectories of the gradient flow.

Theorem 61 .5Suppose f~t[a,b] is compact and has exactly one critical point in its
interior, which is degenerate and of index k. Then M? has the homotopy type of

M® with a cell of dimension k attached, namely, a ball in the unstable manifold of

the critical point.

Proof. (sketch) Let z be the critical point, ¢ = f(z) and € > 0 be asmall real number.
By the previous theorem, M ¢*< has the same homotopy type as M° and likewise for M/ ¢—¢
and M®. Hence, we just have to show that M <*< has the homotopy type of M ¢~¢ with a
cell attached.

o S Xk
(Unstable)

Fig.61.1. A neighborhood of a Morse critical point z. A suitable parameterization of the
flow retracts M€ onto M €U S, which itself can be deformed into M~ U B.
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We have represented in Figure 61.1 the sets M “*< within a Morse neighborhood. The
drawing makesit intuitively clear that some reparameterization of the gradient flow (which
we have represented by some arrows) will collapse M <€ into M€ U S, where the set S
isgiven by:

S={f<c+ezi1+...+ahy, <5}

S can obviously be deformed into:
B={f<c+expi1=...= T}y =0},
that is, aball in the unstable manifold of z. In other words,
Mt ~ M €U B.

O

Any cellular space X is homotopically equivalent to a finite cell (CW) complex Y,

where X and Y have the same number of cellsin each dimension (one deforms each of the

attaching maps defining X into one that attachesto cells of lower dimensions than its own,
see Dubrovin & al. (1987), Section 4). This and the previous theorems yield:

Theorem 61 .6 Any sublevel set M® of a Morse function on a compact manifold
M has the homotopy type of a finite CW complex, whose cells correspond to the

unstable manifolds of the critical points.

M orselneq ua litBscethereawaysisaMorsefunctiononany given manifold, Theorem
61.6 yields:

C orolla ry 61 Ahy compact manifold has the homotopy type of a finite CW complex.

Theorem 61 .8 (M orse Ineq ua lHasgn any Morse function f on a compact
manifold M, the homology of M is generated by a finite complex {Ch, Ox }{1,....dimnr}
whose generators correspond to the critical points of index k of f. In particular, if

cr, = dimCl, 1s the number of critical points of index k,

(61.3) Ck Z bk == dimHk(M, IR)
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and, better:
(61.4) Ch — Ch—1+...£cog>brp —bp_1+...%bg,

with equality holding for k = n.

Proof. Thefirst statement in the theorem is somewhat of atautology for us, sincewe have
defined the homology of M as the cellular homology of any cellular complex representing
M, and thus in particular, we can choose the complex generated by the unstable manifolds
of the critical points. Formula (61.3) isthen trivial, since

Hy(M) = Ker 0/Im 041,

and Ker 0y isasubspace of Cy. The inequalities (61.4) are a consequence of (61.3) and
their proof, |eft to the reader, only involves linear algebra. O

F loer- W itten C ommhexcan give a nice geometric interpretation to the maps 9y, in the
context of Morse theory. Assume that the gradient flow ¢! of our chosen Morse function
is Morse-Smale, i.e. that for any given pair of critical points x, z, their respective stable
and unstable manifold meet transversally. This is again a generic situation, which has the
following implications: the set

M(x,z) = W"(x) N W?*(z),
which isthe union of all orbits connecting « and z, isamanifold and
dimM (x, z) = index(x) — index(z).

Inparticular, if index(x) —index(z) = 1, M (x, z) isaonedimensional manifold made of
afinite number of arcsthat one can count, with 4 according to acertain rule of intersection.
This intersection number m(x, z) gives the coefficient in the generator z of d(x), i.e.

Opx = Z m(x, z).z.
2€CK_1

One can aso define cohomology in this fashion: just take the same complex, but defined
for the function — f. What was a stable manifold becomes an unstable manifold and C,
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becomes C,_;. This not only gives us a geometric way to see cohomology, but a trivia
proof of Poincar€'s duality theorem for compact manifolds:

H" %M, R) = Hy(M,R).

For moredetailson thischain complex, whichissometimes call ed the Floer-Witten complex
but dates back to J. Milnor’s book on cobordism, see eg. Salamon (1990) . For a proof of
Poincar€'s duality using the Morse complex, see Dubrovin & al. (1987).

62. C ontrolling the Top ology of Inv a ria nt S ets

The relationship revealed by Morse between the critical point data of a function and the
topology of the underlying manifold has avery wide generalization in the theory of Conley,
which brings about a similar relationship for general continuous flows on locally compact
topological spaces. The relationship is between local topological data of recurrent parts of
the flow and the global topology of well chosen regions of the space. We will outline this
theory in Section 63.C. For now, we make a small step toward this generalization.

Here, and for the rest of this chapter, the cohomology used is the Cech cohomology
with coefficients in IR (see Spanier (1966)). We do not need to define this cohomology
here: it is enough to state that it is well defined on compact sets. Furthermore it has a
continuity property: If X = NX,,, then H*(X) = lim H*(X,,), where the |atter expresses
the inductive limit of the cohomology modules. &hawi%, Cech cohomology satisfies
al the usual axioms and rules of cohomology and coincides with other cohomologies on
compact manifolds. In this section, we present some of the fundamental conceptsand results
of Conley’stheory, which are used in this book. The next section goes into more detail and
provides proofs for the theorems presented in this section, as well as more results.

I sola ting Bloc kCensider acompact set I which isinvariant under the gradient flow of a
function W on somefinite dimensional manifold. If W isaMorsefunction, then necessarily
I ismade of critical points and the intersections of all their stable and unstable manifolds
(proveit asan exercise!). Exactly aswe did for manifolds, consider the Floer-Witten chain
complex, generated by the critical points and with boundary maps given by the stable-
unstable manifoldsintersection data. It turnsout (see Floer (1989a), or Salamon (1990)) that
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this complex gives the conomology Conley Index of I, atopological/dynamical invariant of
1 that we define below. In certain cases, asin what follows, one can eval uate the cohomol ogy
Conley index and hence give lower estimates on the number of critical points. We use these
resultsin Section 64 to estimate the number of critical points of functions on vector bundles.

D #nition 62.1 Let M beafinite dimensional manifold. A compact neighborhood B in M
is called an isolating block for a (continuous) flow ¢! if points on the boundary &B of B
immediately leave B under the flow, in positive or negative time:

z€dB=¢%) cB® o ¢(=9Y c B° forsome e=¢(z)>0.

Theexit set B~ of B isdefined asthe set of pointsin 9 B whichimmediately flow out of B
in positive time. Given an isolating block B for the flow ¢, define I(B) to be the maximal
invariant set included in B (“maximal” is in the sense of inclusion here). Alternatively,

I(B) = Nier®'(B).

C ohomology C onley Ind ex a nd C uphesegtie.two classical waysto measure the
topological complexity of an invariant set I(B). Oneisits cohomology Conley index:

h(I) = H*(B,B").

The bigger the dimension of this vector space, the more complex the topology of 7. Note
that in the notation “h(1)”, we have deliberately omitted the mention of B: thisis because
the vector spaces H*(B, B~ ) areisomorphic for all isolating block B suchthat I = I(B)
(Conley & Zehnder (1984) ). Hence k(1) isan invariant of the set 1. In practice, the size of
h(I) is often measured by the sum of the Betti numbers

sb(h(I)) =Y _dimH"(B,B").
k

Thisagainisaninvariant of . A second, somewhat rougher way to measure the compl exity
of an invariant set I (or any topological space which admits continuous (semi)flows and a
cohomology) isthe cuplength which is defined as:

cd(Il)=1+sup{k € N|Jwi,...wp, wj € H"(I),n; > 1, andw; U... Uwy # 0}
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G enera lized M orsea nd L yusternic k -S c hnirelnfhenfalh@wvrigsresults are
consequences of the much more general theory of Conley for (semi)flows that we sketch in
the next section.

Theorem 62.2 Let I be a compact isolated invariant set for the gradient flow of
a function W on some manifold. If the function is Morse, the number of critical
points in I is greater or equal to sb(h(I)). In general, the number of critical points

in I is at least equal to cl(I).

R ema rk 6218 one applies Theorem 62.2tothecase I = M = B, B~ = (), then
h(I) = H*(M), cl(I) = cl(M) and we retrieve both the critical point estimates of Morse
and Lyusternick-Schnirelman.

Historicaly, the first time Theorem 62.2 was applied in asignificant way was in the proof
of the following proposition, which appeared in several partsin Conley & Zehnder (1983) :

P rop osition 62.4et M be a compact manifold and W be a real valued function on
M xIR" xIR™. Suppose that the gradient flow of W admits an isolating block B of the
form B ~ M x DT x D™ with exit set M x DT x 0D~ , where D* c R", D~ c R"™
are homeomorphic to the unit balls. If W is a Morse function, it has at least sb(M)

critical points in B. In general, W has at least cl(M) critical points.

=2 [ -
ll

M 0 Do D

Fig. 62.0. The isolating neighborhood in Proposition 62.4.
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Conley and Zehnder applied this theorem in the case M = T", where sb(T") = 27,
and cl(T") = n+ 1. Inthefollowing section we will give aproof of Theorem 62.2 (we will
only sketch the sum of betti number estimate, but give a complete proof of the cuplength
estimate) as well as of Proposition 62.4.

63 . Top ologic a | P roofs
A . P roof of the C up length E stima tein Theorem 62.2

Conley & Zehnder (1983) prove a cuplength estimate (their Theorem 5) that is valid for
a compact invariant set I of a general flow ¢t. We follow their proof. Define a Morse
decomposition for I to be afinite collection {M,,},cp of digoint compact and invariant
subsets of 1, which can be ordered in such away that any x notin U,c p M, is a-asymptotic
toan M; and w-asymptoticto an M;, with¢ < j (z isa-asymptotic (resp. w-asymptotic) to
M;itlimy oo (resp. +o00) ¢'(z) € M;). Onecan show that acompact invariant set aways
has such a Morse decomposition. We now state Theorem 5 of Conley & Zehnder (1983) :

Theorem 63 .1 (C onley- Z ehdatdr)be any compact invariant set for a continuous

flow, and let {Mp},ep be a Morse decomposition for I. Then

(63.1) c(I) <) c(My).

peP

The relevant example for usis when ¢! is the gradient flow of a function with a finite
number of (not necessarily nondegenerate) critical points on a compact invariant set I: it
easy to check that these critical pointsform a M orse decomposition. Since an isolated point
has trivial cohomology, cl(M,,) = 1 for each p in this example, and we have proven the
cuplength estimate in Theorem 62.2. The case when the critical points are not isolated
istrivial in that theorem: ¢l(I) < oo isalwaystrue...

Proof of Theorem 63.1. Note that if (M;,..., My) is a Morse decomposition, then
(M. k-1, My) isalsoaMorse decomposition, where M . ;1 isformed by the union of
M; U...U My;_, and of al the connecting orbits between these sets. Hence, by induction,
we only need to consider the case where k = 2, and (M, M>) is a Morse decomposition
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for I. From the definition of a Morse decomposition, we can deduce the existence of two
compact neighborhoods I; of M, and I of M in I with I; U I, = I and such that M, =
Ne=od!(I1) and My = Ny<op!(I2). In particular, by continuity of the Cech cohomology
H*(I;) = H*(M;),j = 1,2. Thus the proof of (63.1) reduces to that of the inequality
cl(Iy) + cl(I2) > cl(I) whenever I; U I, = I are three compact sets. The next lemmais
devoid of dynamics:

L emma 63 [zt [, Uly C I be three compact sets. If i1 : Iy — I, i3 : Iy — I and
i: 11 Uly — I are the inclusion maps, then, for any o, 5 € H*(I),

ija=0 and 38=0=i"(aUpB)=0.

Proof. We chase the diagram:

H*(I,I,) ® H*(I,L) = H*(I,LUL)
Lt L3 L
H(I) ® H*I) > H*(I)
I L3 L

H*(Il) & H*(Ig) - H*<11UIQ).

Thevertical sequencesareexact sequencesof pairs, the horizontal linesaregiven by Kiinneth
Formula. Starting on the second line of the diagram with o, 5 € H*(I), suppose ija =
0 = i3 then there must be & € H*(1, I;) with jia = a, B e H*(I,I,) with j;B = 0.
Now j*(& U 8) = a U 3 and hence i* (a U 3) = i* o j*(& U 3) = 0, by exactness. O

To finish the proof of Theorem 63.1, let vy, ...,y bein H*(I)and oy U...Uq; # 0.
Let this product be maximum, so that c/(I) = [ + 1. Order the o’s in such a way that
a1 U...U a, isthe longest product not in the kernel of 4. In particular ci(l;) > r + 1
and ij(aq U ... Ua, Ua,q1) = 0. Lemma 63.2 forces i (ap41 U ... Uy) # 0 (@*
is one-to-one here, since I; U I, = I). Thuscl(ls) > 1 —(r+1)+1=101—r,and
c(ly) +c(ls) > 1+ 1=cl(]). O



278 A p p end TOPDLOGICAL TOOLS

B* . The BettiN umb er E stima te of Theorem 62.2 a nd 'CTheabdey

We have proven in Theorem 63.1 that, for a general function W, the number of critical
pointsin an invariant set I for the gradient flow of W is greater than c/(I). We now show
that if 17/ is a Morse function, the number of critical pointsin I is greater than sb(h([)).
To do so, one can either follow Floer (1989a) in his generalization of the Witten complex
(of unstable manifolds of critical points for gradient flows, see the end of Section 61) to
invariant sets. Hisproof reliesin part on Conley’ stheory. Alternatively, one canuse Conley’s
generalized Morse inequalities that we state in this subsection.

Let I be a compact invariant set for a continuous flow ¢* on some locally compact
topologica space. Let (M, ..., M}) be a Morse decomposition for 7. Analogously to
the cuplength estimates of Theorem 63.1, Conley-Morse inequalities relate certain betti
numbers of the Morse sets M to the corresponding betti numbers of 1. To define the
adequate betti numbers, we need to generalize the notion of isolating block to that of index
pair for isolated invariant sets. A compact set 1 is an isolated invariant set if thereis a
neighborhood N of I suchthat I = I(N) isthe maximal invariant subset in N. An index
pair for anisolated invariant set isageneralization of anisolating block. Roughly, I isapair
of compact spaces (N1, N) such that N7\ N, isaneighborhood of 7 and I = I(N7\N3).
Moreover N, plays the role of the exit set: to exit N; U N5, apoint of N; must first go
through N5, see Conley (1978), Conley & Zehnder (1984) . The fundamental property of
these sets is that the homotopy type [N1 /N, x| is independent of the choice of index pair
for I and hence defines a topological invariant called the Conley index of the invariant
set 1. Giving less information, but easier to manipulate is the cohomology Conley index
H*(Ny,N2) = h(I),againaninvariant of I. If (N1, N2) = (B, B~) for anisolating block
B, this definition of i(]) is the same as we have given in Section 62. One way to encode
the information given by h (1) is viathe coefficients of the Poincaré polynomial.

p(t, (1)) := Y t/dimH (N1, Ny).
j>0
In Conley & Zehnder (1984) , it is proven that, given aMorse decomposition (M, . .., M})
for an invariant set I of a continuous flow ¢f, thereis a filtration Ny C Ny C ... C N;,
suchthat (N;, N;_1) isanindex pair for M;. Thisisinstrumental in proving the following
(Conley & Zehnder (1984) :
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Theorem 63 .3 (C onley-M orselneq ua lities)

k

(63.2) > p(t. h(M;)) = p(t, h(I)) + (1 +1)Q(1),

j=1

where Q(t) is a polynomial with positive coefficients

Thistheorem is an extraordinary generalization of the classical Morseinequalities: itis
valid for any continuous flow on alocally compact space (not necessarily a manifold!).

E nd of P roof of Theorem 620.retrieve the betti number estimates of Theorem 62.2,
we use the Morse decomposition of the invariant set I made of the (isolated) critical points
Z1,...,zn. Thanksto the Morse Lemma, we can construct an isolating block for each z;,
and show that the Conley index of z; has the homotopy type of a pointed sphere made by
collapsing the boundary of the local unstable manifold of z; to apoint. Theisolating block
isdenoted by S in Figure 63.1.

(Stable)

Fig. 63.1. The index pair (S,S7) retracts on (B, B™), a pair made of the local unstable
manifold of z and its boundary (a disk of dimension k equal to the index of the critical
point z and its bounding sphere). Thus h(z) = H*(S,S7) = H*(B,B~) = H*(S" )
which has exactly one generator in dimension k.
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Hence p(t, h(z;)) = t“, where u; isthe Morse index of z;. Now the pair (1, () isan
isolating pair for I (no pointsexit I), and thusp(t, h(I)) = > t*dimH"(I). The positivity
of the coefficients of @ in (63.2) therefore insuresthat there are at least dim H* (I) critical
pointsof index &k in 1. O

C . F IderL emma

The following lemma, proven in Floer (1987) gives a situation where one can get ahandle
on the topology of aninvariant set I. It iscentral to the proofs of several topological results
we will use, including Proposition 62.4.

L emma 63 .4 (B loa@mma JLet B be an isolating block for a flow ¢* on a finite
dimensional manifold, and I be its maximal invariant set. Suppose that there is a

retraction o : B — P, where P is some compact subset of B. If there is a class

u € H*(B,B™) such that :

v—uUa*(v): H(P) — H*(B,B"7)

1$ an 1somorphism, then
ar*  H*(P) — H*(I)

is injective, where oy denotes the restriction of a to I.

(If N C M aretwotopological spacesand: : N — M istheinclusionmap, aretraction
isamapr : M — N suchthat r o i = Idy, that isr restrictsto Id on N).

C orolla ry 63 Bt B, I, P be as in Lemma 63.4, and let the flow ¢' in that lemma
be the gradient of some function W. Then the number of critical points of W is at

least cl(P).

Proof. Since H*(P) — H*(I) is injective, cl(I) > cl(P) and the Corollary is an
immediate consequence of Theorem 62.2. O

Proof of Lemma 63.4. Define B® = N;~ ¢! B, the set of points that stay in B for all
negative time.
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L emma 63 1§ H*(B,B*UB™) =0
2)1* : H*(B*®) — H*(I(B)) is an isomorphism, where | : I(B) — B is the

inclusion.

Before proving this lemma, we use it to finish the proof of Lemma 63.4. Consider the

diagram:
H*(B,B~) ® H*(B,B*®) = H*(B,B*UB~) =0
| 1d Ly | k*
H*(B,B~) ® H*B) = H*(B,B")
L
-
H*(B>) = H*(I)

whereall vertical mapsareinduced by inclusions, and thetwo first horizontal mapsare given
by Kunneth Formula. Suppose oy *v = 0 for somewv € H*(P). Sincel* isan isomorphism
and oy = ap=< ol ,0 = a;* = *(ap=)*v = (ap=)*v = 0. SInCe ap~ = a o1,
0 = ap=*v = i*a*v. Themiddle, vertical sequence isthe exact sequence of a pair. Hence
thereisaw € H*(B, B>) such that j*w = a*v. Butu U o*v = k* (v Uw) = k*(0) = 0.
The hypothesis of Lemma 63.4 forcesv = 0. O

Proof of Lemma 63.6. Let B® = ¢'(B) and B® = N;~ B! asbefore. Notein particular
that, in the Hausdorff topology, lim;_, .. Bt = B>, and lim;_.q B! = B. To thetriple of
spaces (B, Bt U B~, B™) corresponds the exact sequence:

(63.3)

S HYB,B'UB™) - H*(B,B")SH*(B'UB~,B)SH*"Y(B,B'UB")...,

(see eg. Dubrovin & al. (1987) ). We now show that i* is an isomorphism. Consider the
diagram:
(BtUB~,B")
7 Li
(B",B-NnB') %  (B,B")

The excision theorem implies that <7 is an isomorphism, and the continuity of the Cech
cohomology implies that 3 is an isomorphism. Since the diagram commutes, * must be
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an isomorphism. But this forces H*(B, B* U B~) = 0 in (63.3). Taking the limit of this
equality ast — oo proves 2).

Using the long exact sequence of the pair (B°°, I'), the map [* induced by the inclusion
[ : I — B isanisomorphism whenever H*(B>, ) = 0, which we proceed to show.
Note that ¢ ~* B> C B> and, by definition, I = N;>0¢~*(B>°). Consider the maps:

(B=,¢7'B=) % (67! B*,¢7'B®) L (B>, 07 B>),
where j istheinclusion. Themap j o ¢~ isclearly homotopic to Id, hence
H*(B®,¢"'B™®) = H*(¢"'B*, ¢ "B>®) = 0.
Sincethisistrue for all ¢, the continuity of the Cech cohomology concludes. O

D . P roof of P rop osition 62.4

To prove this proposition, we let the manifold M play the role of P in Lemma 63.4.
The retraction « of that lemma is given here by the canonical projection o : B — M.
Clearly the projection of B onto M x D~ isadeformation retract, which deforms B~ onto
M x90D~.Hence H*(B,B~) =2 H*(M x D=, M x 9D~ ). Now, Kiinneth Formulagives
an isomorphism:

@]
H*(M)® H*(D~,0D~) = H*(M x D™, M x 0D")

where, as suggested by the notation, one gets all of the classes in the right hand side
vector space as cup products of classes in the two left hand side spaces (with the appro-
priate identifications given by the inclusion maps). But, letting n = dimD~, we have
H*(D—,0D~) = H*($",-), which has exactly one generator v in dimension n.

Hence H**"(B,B~) = H*(M) and sb(h(I)) = sb(M) where I is the maximal
invariant set in B. This and Theorem 62.2 yield the Betti number estimate. The homeo-
morphism H*(M) = H*(B, B™) is of the type prescribed by Lemma 63.4. Thisimplies
that the induced map H*(M) — H*(I) isinjective and hence cl(I) > cl(M). This fact
and Theorem 62.2 give the cuplength estimate. O
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E *. F leefTheorem of G lob a | C ontinua tion of Hyp erb olic Inv a ria ntS ets.

Floer's Lemma 63.4 is the cornerstone to the proof of the following theorem, where he
makes good use of the powerful property of “invariance under continuation” of the Conley
Index. This theorem illustrates the power of Conley’s theory, and shows the historical root
of Floer Cohomology. Note that, in the theory of dynamical systems, the hyperbolicity of
an invariant set for a dynamical system isintimately related to its persistence under small
perturbations of the system: this relationship is the core of many theorems on structural
stability. What is interesting about the following theorem (and Conley’s theory in general)
isthat it provides situations when the (rough) persistence of an invariant set can be proven
for arbitrarily big perturbations.

The notion of continuation of invariant sets makes use of the simple following fact: an
index pair for aflow ¢* will remain an index pair for all flowsthat are C° closeto ¢*. Two
isolated invariant sets for two different flows ¢}, ¢! are related by continuation if thereis
acontinuous curve ¢ of flowsjoining them which can be (finitely) covered by intervals (in
A) of flows having the same index pair. The following theorem appeared as Theorem 2 in
Floer (1987)to which we refer the reader for a proof. It can be seen as an instance of weak,
but global, stability of normally hyperbolic invariant sets, which wenow define. Aninvariant
set G is normally hyperbolic for aflow ¢t on amanifold IV if there is a decomposition:

TN|,=TGa& ET & E-

which is invariant under the covariant linearization of the vector field V' corresponding to
@' with respect to some metric { , ), so that for some constant m > 0:

(63.4) (£, DVE) < —ml&,€) (resp. > +ml€,€)) for € € B~ (resp. E*)

Theorem 63 .7 (F loée¥ ¢ be a continuous one parameter family of flows on a C?
manifold N . Suppose that Gy is a compact C? submanifold invariant under the flow
. Assume that Go is normally hyperbolic for the flow ¢l and suppose that there
s a retraction o : N — Gg. Finally, suppose that there is a family G\ of invariant

sets for ¢ which are related by continuation to Gy . Then the map:
alg, + H*(Go) — H*(G))

in Cech cohomology is injective.



