
Appendix 2

SOME TOPOLOGICAL TOOLS

In order to estimate the minimum number of periodic orbits for a symplectic twist map

or a Hamiltonian system, we need an estimate on the minimum number of critical points

for the energy function of the corresponding variational problem. Estimating the number of

critical points of functions on compact manifolds is the jurisdiction of Morse Theory and

Lyusternick-Schnirelman Theory. Given the gradient flow of a real valued function f on a

compact manifold M , Morse Theory rebuilds M from the unstable manifolds of the critical

points of f . The combinatorial data of this construction gives a relationship between the set of

critical points and the topology of M , in the guise of its homology. Unfortunately, the space

on which the energy function W is defined is not compact. However, it usually is a vector

bundle over a compact manifold M , and reasonably natural boundary conditions on the map

or Hamiltonian system translates into some conditions of “asymptotic hyperbolicity” for

W . This is a situation where Conley’s theory, which studies the relationship between the

recurrent dynamics of general flows and the topology of (pieces of) their phase spaces was

brought to bear with great success.

For the reader who has no background in algebraic topology, we start in Section 60 by

outlining, following some examples, an easy way to compute the homology of a manifold

by decomposing it into cells. We then illustrate Morse theory in Section 61, by considering

the cells given by the unstable manifolds of critical points of a real valued function on the

manifold. We hope that this will give such a reader at least a flavor of the rest of this chapter.

Starting in Section 62, we assume familiarity with algebraic topology. We give some of

the basic definitions of Conley’s theory and state results on estimates of number of critical

points in isolated invariant sets for gradient flows. In Section 63, we prove most of these
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results. In Section 64, we apply these results to functions on vector bundles whose gradient

flow are asymptotically hyperbolic.

60.* Hands On Introduction To Homology Theory

To a manifold, or to certain subspaces of it, we want to associate some algebraic objects called

homology groups that are invariant under homeomorphisms or other natural topological

deformations. Usually, the best way to calculate these groups (but not the best way to show

their invariance properties), is to decompose the spaces studied into well understood pieces,

and then define the groups from the combinatorial data describing how these pieces fit

together. In this introduction we decompose spaces into cells, which are discs of different

dimensions, and show how to compute cellular homology.

A. Finite Cell Complexes

Given a topological space X (e.g. a differentiable manifold) we can construct a new one by

attaching a cell of dimension n. This is done by choosing an attaching map f from the

bounding sphere Sn−1 of the cell Dn (a disk of dimension n) to X . The new space, denoted

by X ∪f Dn is given by the union of X and Dn where each point of ∂Dn is identified with

its image by f in X . The topology on X ∪f Dn is that of the quotient X ∪Dn/{x ∼ f(x)}.

Example 60.1 One can construct the sphere S2 by attaching the disc D2 to a point p. The

space X = {p} is a manifold of dimension 0, and the attaching map f sends each point

of the boundary circle of D2 to p. One can also construct a sphere by attaching a disk to

another one (what is the attaching map?). These constructions have obvious generalization

to higher dimensions.

A cellular space is a space built by successively attaching a finite number of cells,

starting from a finite number of points (cells of dimension 0). If in this process each cell

is attached to cells of lower dimensions, the space obtained is called a finite cell complex

or CW complex. The union of all cells of dimension less than k in a finite cell complex is

called the k–skeleton. Thus the k+1–skeleton is built by attaching cells of dimension k+1
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to the k–skeleton. The dimension of the cell of maximum dimension in a cellular space X

(and hence of a CW complex) is called the dimension of X .

Examples 60.2 Figure 60.1 shows how the torus can be decomposed (this is not the only

way!) into a finite cell complex: its 0–skeleton is the point z. To get the 1–skeleton we attach

both extremities of the “equator” a and the “meridian” b to z. The attaching maps send the

boundaries −1 and 1 of the 1–cells a ∼= [−1, 1] ∼= b to the point z. Finally, the 2–skeleton

is obtained by attaching the disk D (stretched to a square) to the 1–skeleton as indicated by

the “flat” picture of the torus. Note that the 1–skeleton looks like a “bouquet of two circles”.
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Fig. 60.1. The torus T2 as a finite CW complex.

One can generalize this construction to surfaces of any genus g (spheres with g handles)

by gluing a 2 cell to a polygon with 4g sides and identifying all vertices to a single point,

and edges two by two as indicated by their name and orientations on the following figure

(g is 2 here):
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Fig. 60.2. The double torus (surface of genus 2) as a finite CW complex. Identify edges
according to their names and orientations, and identify all vertices to one point. When
cutting the octagon in half through the curve γ we obtain two handles, which are tori with
a disk (bounded by the curve γ) removed in each. Any compact surface can be described
with this method.

More generally, we will show in the next section that any compact manifold is homeo-

morphic to a finite cell complex.

Exercise 60.3 Decompose Sn,Tn, IRIPn and the Klein bottle into finite cell complexes.
Remember that IRIPn can be defined as IDn/ ∼, where the relation ∼ identifies any two
antipodal points on the boundary of the n–disk IDn. The Klein bottle is [−1, 1]2/ ∼ where
(1, y) ∼ (−1,−y) and (x, 1) ∼ (x,−1).

B*. Cellular Homology

Bouquets of spheres. When we “crush” the (k-2)–skeleton Xk−2 of a finite cell complex

X to a point inside the (k-1)–skeleton Xk−1, the boundary of each (k-1)-cell crushes to

that point. Hence each (k-1)-cell of Xk−1 becomes a (k-1)-sphere in Xk−1/Xk−2. All

these spheres meet at exactly one point, where the crushed Xk−2 collapsed: we say that

Xk−1/Xk−2 is a bouquet of spheres. The attaching map f of a k–cell to Xk−1 gives rise

to a map f̃ : Sk−1 → Xk−1/Xk−2, by composition with the quotient map. Hence we have

a map f̃ from a sphere of dimension k − 1 to a bouquet of spheres, all of dimension k − 1.
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Digression on degree and homotopy. Any continuous map from a sphere S1 to a sphere

S2 of same dimension comes equipped with a degree which, informally, is an integer

which measures the number of times S1 “wraps around” S2 under this map. This integer

can be negative, as we keep track of orientation. Since the proper topological definition of

degree requires homology (which we are in the process of defining), we restrict ourselves to

differentiable maps. The degree of a differentiable map f between two manifolds of same

dimension is given by:

(60.1) deg(f) =
∑

x∈f−1(z)

1 · (sign det Dfx)

where z is any regular value of f , i.e. no determinant in the above sum is zero (by Sard’s

theorem, almost all values of a smooth map are regular). It turns out that the above number is

independent of the (regular) point z. The degree of a map is also invariant under homotopy

of the map. [Two continuous maps f0 and f1 between the manifold M and the manifold N

are homotopic if there is a continuous map (called homotopy) F : [0, 1]×M → N such

that F (0,z) = f0(z), F (1,z) = f1(z) for all z in M ].

Back to horticulture. The attaching map f̃ : Sk−1 → Xk−1/Xk−2 has a multiple degree:

on each sphere Si in the bouquet one can compute the oriented number of preimages under

f̃ of a regular point as in (60.1) (without loss of generality, we can assume that f̃ is

differentiable except at the common point of the spheres). Suppose that ck−1
1 , . . . , ck−1

Nk−1

denote the (k − 1)–cells of the cell complex and ck1 , . . . , ckNk its k-cells. We now form an

Nk×Nk−1 integer matrix ∂k whose entry ∂k(ij) is the degree of the attaching map from ∂cki

to the jth sphere of the bouquet, i.e. ck−1
j /∂ck−1

j . The matrices ∂k, for k ∈ {1, . . . , dimX}
essentially give all the combinatorial data describing how the complex X is pieced together

from our collection of cells.

Chain complexes. We now want to view the matrices ∂k as those of linear maps between

finite dimensional vector spaces, or modules. To do this, one thinks of ck1 , . . . , ckNk as the

basis vectors of an abstract vector space (or free module) Ck whose elements are formal

sums of the form

c =
Nk∑
1

ajc
k
j ,
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where aj is an element of some “coefficient” field (or ring) K (usually ZZ2, ZZ, Q or IR).

Hence Ck is generated by the k-cells and dimCk = Nk. For convenience, we define ∂0 ≡ 0

on C0.

Lemma 60.4

(60.2) ∂k−1 ◦ ∂k ≡ 0.

The proof of this crucial lemma, which we will not give here (see, eg. Dubrovin & al.

(1987) ) usually uses the long exact sequence of a triple and a pair in simplicial homology.

A chain of maps and vector spaces (or modules):

Cn
∂n→ Cn−1 → . . . Ck

∂k→ Ck−1 → . . .→ C0

satisfying (60.2) is called a chain complex.

Definition 60.5 The kth homology group of the finite cell complex X with coefficients in

a ring or field K is given by:

Hk(X; K) = Ker ∂k/Im ∂k+1.

where, by convention, ∂0 = 0 = ∂n+1

This definition makes sense since, by Lemma 60.4, Im ∂k+1 ⊂ Ker ∂k. Note that

Hk(X) = 0 whenever k > dim X or k < 0, since for such k, Xk = ∅.

Homology Of The Circle. The circle S1 is a CW complex: we start with a point p and

attach to it an interval I = [0, 1]; the boundary points of I become identified to p under

the attaching map. Using IR as coefficients in our chain complex, we get C0 = IR.p ∼=
IR, C1 = IR.I ∼= IR. The map ∂1 ≡ 0: p has the two preimages {0} and {1} under the

attaching map, but they come with opposite orientations under the orientation induced by

I . Hence the degree of the attaching map is 0 here and the homology of the circle is given

by:

Hk(S1, K) =
{

K if k = 0, 1,
0 otherwise

.
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Homology Of The Torus. Figure 60.1 above gives the generators for a chain complex for

the torus: C0 = IR · z, C1 = IR · a⊕ IR · b, C2 = IR ·D. All the boundary maps are 0 in

this case: ∂1a = 0 because it geometrically yields z twice but with opposite orientation.

Likewise for ∂1b. As for ∂2D = a + b − a − b = 0, again due to orientation. Hence

Ker ∂k/Im ∂k+1 = Ck for k = 1, 2, 3. We have shown:

Hk(T2, IR) ∼=




IR k = 0, 2
IR2 k = 1
0 otherwise.

Clearly, this result remains valid if we replace IR by any coefficient ring K.

Homology Of The K lein Bottle.A less trivial example is given by the Klein bottle. This

non orientable surface is a torus with a twist and it cannot be embedded in IR3. We build it

with the same cells z,a, b and D as the torus. The only change occurs in the definition of

∂2: instead of gluing D to two copies of b in opposite orientation, we give them the same

orientation (according to that of the boundary of D):

a

a

b

b

zz

zz

D

Fig. 60.3. A cell decomposition for the Klein bottle. The only difference with that of the
torus is the orientation of one of the segments b.

Let us use the integers ZZ as our coefficient ring. As a result of the orientation change,

the matrix of ∂2 is now

(
0
2

)
and Ker ∂2 = {0}. From this we immediately get that

H2(Klein, ZZ) = 0. As in the case of the torus, ∂1 ≡ 0 so that Ker ∂1 = C1 = a·ZZ⊕b·ZZ.

Since Im ∂2 = {0} · a ⊕ 2ZZ · b, H1(Klein, ZZ) ∼= ZZ ⊕ ZZ2. As in the case of the torus,

H0(Klein, ZZ) = ZZ (in fact, the rank of H0 gives the number of connected components

of a manifold). Now let’s reexamine the above computation with coefficients K = ZZ2

instead: the map ∂2 = 0 in this case since 2=0 in this ring. Thus, in this case we are

back to the same situation as with the torus: H0(Klein, ZZ2) ∼= ZZ2, H1(Klein, ZZ2) ∼=
ZZ2⊕ZZ2, H2(Klein, ZZ2) ∼= ZZ2. Finally, let’s choose K = IR. Since Ker ∂2 = C2 in this
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case again, H2(Klein, IR) = IR. Since IR/2IR = IR/IR = {0}, H1(Klein, IR) ∼= IR. As

before H0(Klein, IR) ∼= IR.

S ome genera l p rop erties a nd d efinitions rela ted to homology.Let X be a compact

manifold of dimension n. As we will see in next section, it can always be decomposed into

a finite CW complex.

•dimHk(M, IR) = rank Hk(M, ZZ) = bk is the kth Betti number of M .

•
∑n

k=1(−)kbk = χ(M) is the Euler characteristic of M .

•Neither bk nor χ(M) depend on the chain decomposition chosen for M .

•b0 gives the number of connected component of M .

•bn = 1 if M is orientable, bn = 0 if M is not orientable.

•The importance of homology stems in great part from its invariance under topological

equivalences. One topological equivalence is that of homeomorphism. A coarser equivalence

(see Exercise 60.7 ) is that of homotopy type. Two topological spaces M and N have the

same homotopy type if there are continuous maps φ : M → N , ψ : N → M such that

φ◦ψ and ψ ◦φ are homotopic to the Identity maps of M and N respectively. In other words

M can be deformed into N and vice-versa.

Theorem 60 .6If the two manifolds M and N are homeomorphic, or have the same

homotopy type, then they have same homology: H∗(M) = H∗(N) (the star ∗ stands

for any integer).

C . C ohomology

Roughly speaking, cohomology is dual to homology. For readers of this book, it might be

easier to see it through differential forms, which are dual to chains of cells in the sense that

the integral < c, ω >=
∫
c
ω of a form ω on a chain c is a linear, real valued function of the

variable c (it is also linear in ω). The duality bracket given by integration also satisfies:

< ∂ c, ω >=< c, dω >

where d is the exterior differentiation on forms. This formal equality is a general requirement

for defining cohomology. In the case of forms it is simply given by Stokes’ Theorem. Finally,

we can define the cochain complex
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0→ C∗0
d1→C∗1

d2→ . . .
dn→ C∗n → 0

where C∗k = Λk is the vector space of k–forms and dk is exterior differentiation. As with

homology, we can define the DeRham cohomology group as:

Hk(M, IR) = Ker dk+1/Im dk,

i.e. this cohomology is the quotient of closed forms over exact forms. One notable differ-

ence between homology and cohomology is the direction of the arrows in the complexes

that defines them. Another notable difference, which makes the use of cohomology often

preferable, is the existence of a natural product operation in cohomology, called the cup

product. In DeRham cohomology, this cup product takes the form of wedge product of the

forms:

[ω1] ∪ [ω2] = [ω1 ∧ ω2]

where the notation [ω] denotes the class of the closed form ω and ∪ the cup product.

There are many different ways to define cohomology, but it can be shown that (given some

normalization requirements), they all give the same result on compact manifolds. Poincaré,

for instance, introduced cohomology (not under that name) by geometrically constructing

a dual complex to a triangulation (a special CW chain decomposition). In the next section,

where unstable manifolds of critical points of a Morse function provide us with a chain

decomposition, the dual decomposition can be taken to be that of stable manifolds.

E x erc ise 60 .7Show that the circle and the cylinder have same homotopy type but are not
homeomorphic.

E x erc ise 60 .8Using Exercise 60.3, compute the homology of Sn,Tn, IRIPn.

61 .* M orse Theory

We now show how any compact manifold can be described as a cellular space, with cells

given by the unstable manifolds of the critical points of a Morse function. This immedi-

ately yields a relationship between critical points and homology, in the guise of the Morse

Inequalities. We first define some of these terms. For more details on the material in this

section, the reader should consult Milnor (1969) .
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G ra d ient F low A nd M orse F unc tions.Let f : M → IR be a differentiable function on

a manifold M . A critical point for f is a point z at which the differential of f is zero:

df(z) = 0. If f is twice differentiable, the critical point z is called nondegenerate if

(61.1) det
∂2f(z)

∂x2
�= 0

where this second derivative is taken with respect to any local coordinatesx around z on M .

The function f is a Morse function if all its critical points are nondegenerate. One can show

that, on any given manifold, Morse functions are generic in the set of twice differentiable

functions (see eg. Guillemin & Pollack (1974) or Milnor (1969) ). Note that Condition

(61.1) is independent of the coordinate system. Indeed, at a critical point z,

∂2f(z)
∂y2

=
∂x

∂y

t ∂2f(z)
∂x2

∂y

∂x
.

This last formula also implies that the number of negative eigenvalues of the real, symmetric

matrix ∂2f(z)
∂x2 does not depend on the coordinate system chosen around the critical point

z. This number is called the Morse index of z. Qualitatively, the level set portrait of a

function around a nondegenerate critical point is entirely determined by the index of the

critical point. Indeed:

L emma 61 .1 ( M orse L emma )Let z be a nondegenerate critical point for a function

f on a manifold of dimension n. There is a coordinate system x around z such that:

f(x) = f(z)− x2
1 − . . .− x2

k + x2
k+1 + . . . + x2

n.

We refer the reader to Milnor (1969) for a proof of this lemma, which generalizes the

diagonalization process (Gram-Schmidt) for bilinear forms. Since the Morse Lemma clearly

implies that the critical points of a Morse functions are isolated, we have:

C orolla ry 61 .2A Morse function on a compact manifold has a finite number of

critical points.

The gradient flow of a function f is the solution flow for the O.D.E.:

(61.2) ż = −∇f(z).
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The gradient ∇f is defined here by 〈∇f, .〉 = df(.), where the brackets denotes some

chosen Riemannian metric (on IRn or Tn, one usually uses the dot product). f decreases

along the flow:

d

dt
f(z(t)) = −{∇f(z(t))}2 ≤ 0

with equality occurring exactly at the critical points. The eigenvectors corresponding to the

negative eigenvalues of ∂2f(z)
∂x2 span a subspace of TzM which is tangent to the unstable

manifold at z of the gradient flow. [We remind the reader that the unstable manifold of a

restpoint for a flow φt is the manifold Wu(z∗) of points whose backward orbit is asymptotic

to the restpoint z∗: Wu(z∗) = {z | limt→−∞ φt(z) = z∗}]. In the case of the gradient

flow of a Morse function, the unstable manifold of a critical point is tangent to the x1, . . . , xk

plane given by the Morse Lemma. Hence the Morse index of a nondegenerate critical

point of a Morse function is the dimension of its unstable manifold.

R ema rk 61 .3Note that if the metric chosen to define the gradient is the euclidean one in

the Morse coordinate chart, the (x1, . . . , xk) plane is itself the (local) unstable manifold of

the critical point, at least in that chart. This can always be arranged, by a local perturbation

of the metric, and we will assume from now on that this is the case.

Top ology Of S ub lev el S ets.The gist of Morse theory consists in studying how the topology

of the sublevel set:

Ma = {x ∈M | f(x) ≤ a}

changes as a varies.

Theorem 61 .4 If there are no critical points in f−1[a, b], then Ma and M b are

diffeomorphic. The inclusion of Ma in M b is a deformation retraction.

Proof . Deform M b into Ma by flowing down the trajectories of the gradient flow, with

appropriate speed (controlled by reparameterization of the flow) and during an appropriate

time interval. This is possible as long as there are no critical value in [a, b]. ��
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M
b

M
a

Fig. 61.1. Deformation of a sublevel set Mb into the sublevel set Ma when there are no
critical points in f−1[a, b]. The lines with arrows represent trajectories of the gradient flow.

Theorem 61 .5Suppose f−1[a, b] is compact and has exactly one critical point in its

interior, which is degenerate and of index k. Then M b has the homotopy type of

Ma with a cell of dimension k attached, namely, a ball in the unstable manifold of

the critical point.

Proof . (sketch) Let z be the critical point, c = f(z) and ε > 0 be a small real number.

By the previous theorem, M c+ε has the same homotopy type as M b and likewise for M c−ε

and Ma. Hence, we just have to show that M c+ε has the homotopy type of M c−ε with a

cell attached.

M c+
e

M
c+
e

M
c-
e

M
c-
e

S

x1,....., xk
(Unstable)

xk+1,....., xn

(Stable)

z

B

Fig. 61.1. A neighborhood of a Morse critical point z. A suitable parameterization of the
flow retracts Mc+ε onto Mc−ε ∪ S, which itself can be deformed into Mc−ε ∪B.
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We have represented in Figure 61.1 the sets M c±ε within a Morse neighborhood. The

drawing makes it intuitively clear that some reparameterization of the gradient flow (which

we have represented by some arrows) will collapse M c+ε into M c−ε ∪ S, where the set S

is given by:

S = {f ≤ c + ε, x2
k+1 + . . . + x2

k+n ≤ δ}.

S can obviously be deformed into:

B = {f ≤ c + ε, xk+1 = . . . = xk+n = 0},

that is, a ball in the unstable manifold of z. In other words,

M c+ε �M c−ε ∪B.

��
Any cellular space X is homotopically equivalent to a finite cell (CW) complex Y ,

where X and Y have the same number of cells in each dimension (one deforms each of the

attaching maps defining X into one that attaches to cells of lower dimensions than its own,

see Dubrovin & al. (1987), Section 4). This and the previous theorems yield:

Theorem 61 .6 Any sublevel set Ma of a Morse function on a compact manifold

M has the homotopy type of a finite CW complex, whose cells correspond to the

unstable manifolds of the critical points.

M orse I neq ua lities.Since there always is a Morse function on any given manifold, Theorem

61.6 yields:

C orolla ry 61 .7Any compact manifold has the homotopy type of a finite CW complex.

Theorem 61 .8 ( M orse I neq ua lities)Given any Morse function f on a compact

manifold M , the homology of M is generated by a finite complex {Ck, ∂k}{1,...,dimM}

whose generators correspond to the critical points of index k of f . In particular, if

ck = dimCk is the number of critical points of index k,

(61.3) ck ≥ bk = dim Hk(M, IR)
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and, better:

(61.4) ck − ck−1 + . . .± c0 ≥ bk − bk−1 + . . .± b0,

with equality holding for k = n.

Proof . The first statement in the theorem is somewhat of a tautology for us, since we have

defined the homology of M as the cellular homology of any cellular complex representing

M , and thus in particular, we can choose the complex generated by the unstable manifolds

of the critical points. Formula (61.3) is then trivial, since

Hk(M) = Ker ∂k/Im ∂k+1,

and Ker ∂k is a subspace of Ck. The inequalities (61.4) are a consequence of (61.3) and

their proof, left to the reader, only involves linear algebra. ��

F loer- W itten C omp lex .One can give a nice geometric interpretation to the maps ∂k in the

context of Morse theory. Assume that the gradient flow φt of our chosen Morse function

is Morse-Smale, i.e. that for any given pair of critical points x,z, their respective stable

and unstable manifold meet transversally. This is again a generic situation, which has the

following implications: the set

M(x,z) = Wu(x) ∩W s(z),

which is the union of all orbits connecting x and z, is a manifold and

dimM(x,z) = index(x)− index(z).

In particular, if index(x)− index(z) = 1, M(x,z) is a one dimensional manifold made of

a finite number of arcs that one can count, with± according to a certain rule of intersection.

This intersection number m(x,z) gives the coefficient in the generator z of ∂(x), i.e.

∂kx =
∑

z∈Ck−1

m(x,z).z.

One can also define cohomology in this fashion: just take the same complex, but defined

for the function −f . What was a stable manifold becomes an unstable manifold and Ck
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becomes Cn−k. This not only gives us a geometric way to see cohomology, but a trivial

proof of Poincaré’s duality theorem for compact manifolds:

Hn−k(M, IR) ∼= Hk(M, IR).

For more details on this chain complex, which is sometimes called the Floer-Witten complex

but dates back to J. Milnor’s book on cobordism, see eg. Salamon (1990) . For a proof of

Poincaré’s duality using the Morse complex, see Dubrovin & al. (1987).

62. C ontrolling the Top ology of I nv a ria nt S ets

The relationship revealed by Morse between the critical point data of a function and the

topology of the underlying manifold has a very wide generalization in the theory of Conley,

which brings about a similar relationship for general continuous flows on locally compact

topological spaces. The relationship is between local topological data of recurrent parts of

the flow and the global topology of well chosen regions of the space. We will outline this

theory in Section 63.C. For now, we make a small step toward this generalization.

Here, and for the rest of this chapter, the cohomology used is the Čech cohomology

with coefficients in IR (see Spanier (1966)). We do not need to define this cohomology

here: it is enough to state that it is well defined on compact sets. Furthermore it has a

continuity property: If X = ∩Xn, then H∗(X) = lim
→

H∗(Xn), where the latter expresses

the inductive limit of the cohomology modules. Otherwise, Čech cohomology satisfies

all the usual axioms and rules of cohomology and coincides with other cohomologies on

compact manifolds. In this section, we present some of the fundamental concepts and results

of Conley’s theory, which are used in this book. The next section goes into more detail and

provides proofs for the theorems presented in this section, as well as more results.

I sola ting Bloc k s.Consider a compact set I which is invariant under the gradient flow of a

function W on some finite dimensional manifold. If W is a Morse function, then necessarily

I is made of critical points and the intersections of all their stable and unstable manifolds

(prove it as an exercise!). Exactly as we did for manifolds, consider the Floer-Witten chain

complex, generated by the critical points and with boundary maps given by the stable-

unstable manifolds intersection data. It turns out (see Floer (1989a), or Salamon (1990)) that
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this complex gives the cohomology Conley Index of I , a topological/dynamical invariant of

I that we define below. In certain cases, as in what follows, one can evaluate the cohomology

Conley index and hence give lower estimates on the number of critical points. We use these

results in Section 64 to estimate the number of critical points of functions on vector bundles.

D efinition 62.1 Let M be a finite dimensional manifold. A compact neighborhood B in M

is called an isolating block for a (continuous) flow φt if points on the boundary ∂B of B

immediately leave B under the flow, in positive or negative time:

z ∈ ∂B ⇒ φ(0,ε) ⊂ Bc or φ(−ε,0) ⊂ Bc for some ε = ε(z) > 0.

The exit set B− of B is defined as the set of points in ∂B which immediately flow out of B

in positive time. Given an isolating block B for the flow φt, define I(B) to be the maximal

invariant set included in B (“maximal” is in the sense of inclusion here). Alternatively,

I(B) = ∩t∈IRφt(B).

C ohomology C onley I nd ex a nd C up length.There are two classical ways to measure the

topological complexity of an invariant set I(B). One is its cohomology Conley index:

h(I) = H∗(B, B−).

The bigger the dimension of this vector space, the more complex the topology of I . Note

that in the notation “h(I)”, we have deliberately omitted the mention of B: this is because

the vector spaces H∗(B, B−) are isomorphic for all isolating block B such that I = I(B)

(Conley & Zehnder (1984) ). Hence h(I) is an invariant of the set I . In practice, the size of

h(I) is often measured by the sum of the Betti numbers

sb(h(I)) =
∑
k

dimHk(B, B−).

This again is an invariant of I . A second, somewhat rougher way to measure the complexity

of an invariant set I (or any topological space which admits continuous (semi)flows and a

cohomology) is the cuplength which is defined as:

cl(I) = 1 + sup{k ∈ IN | ∃ ω1, . . . ωk, ωj ∈ Hnj (I), nj > 1, and ω1 ∪ . . . ∪ ωk �= 0}
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G enera liz ed M orse a nd L yusternic k - S c hnirelma n Theories.The following results are

consequences of the much more general theory of Conley for (semi)flows that we sketch in

the next section.

Theorem 62.2 Let I be a compact isolated invariant set for the gradient flow of

a function W on some manifold. If the function is Morse, the number of critical

points in I is greater or equal to sb(h(I)). In general, the number of critical points

in I is at least equal to cl(I).

R ema rk 62.3If one applies Theorem 62.2 to the case I = M = B, B− = ∅, then

h(I) = H∗(M), cl(I) = cl(M) and we retrieve both the critical point estimates of Morse

and Lyusternick-Schnirelman.

Historically, the first time Theorem 62.2 was applied in a significant way was in the proof

of the following proposition, which appeared in several parts in Conley & Zehnder (1983) :

P rop osition 62.4Let M be a compact manifold and W be a real valued function on

M×IRn×IRm. Suppose that the gradient flow of W admits an isolating block B of the

form B �M ×D+×D− with exit set M ×D+×∂D−, where D+ ⊂ IRn, D− ⊂ IRm

are homeomorphic to the unit balls. If W is a Morse function, it has at least sb(M)

critical points in B. In general, W has at least cl(M) critical points.

✕

✕M D+
✕ D-

Fig. 62.0. The isolating neighborhood in Proposition 62.4.
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Conley and Zehnder applied this theorem in the case M = Tn, where sb(Tn) = 2n,

and cl(Tn) = n+1. In the following section we will give a proof of Theorem 62.2 (we will

only sketch the sum of betti number estimate, but give a complete proof of the cuplength

estimate) as well as of Proposition 62.4.

63 . Top ologic a l P roofs

A . P roof of the C up length E stima te in Theorem 62.2

Conley & Zehnder (1983) prove a cuplength estimate (their Theorem 5) that is valid for

a compact invariant set I of a general flow φt. We follow their proof. Define a Morse

decomposition for I to be a finite collection {Mp}p∈P of disjoint compact and invariant

subsets of I , which can be ordered in such a way that any x not in ∪p∈PMp is α-asymptotic

to an Mj and ω-asymptotic to an Mi, with i < j ( x is α-asymptotic (resp. ω-asymptotic) to

Mj if limt→−∞ (resp. +∞) φt(x) ∈Mj). One can show that a compact invariant set always

has such a Morse decomposition. We now state Theorem 5 of Conley & Zehnder (1983) :

Theorem 63 .1 ( C onley- Z ehnd er)Let I be any compact invariant set for a continuous

flow, and let {MP }p∈P be a Morse decomposition for I. Then

(63.1) cl(I) ≤
∑
p∈P

cl(Mp).

The relevant example for us is when φt is the gradient flow of a function with a finite

number of (not necessarily nondegenerate) critical points on a compact invariant set I: it

easy to check that these critical points form a Morse decomposition. Since an isolated point

has trivial cohomology, cl(Mp) = 1 for each p in this example, and we have proven the

cuplength estimate in Theorem 62.2. The case when the critical points are not isolated

is trivial in that theorem: cl(I) <∞ is always true...

Proof of Theorem 63.1. Note that if (M1, . . . , Mk) is a Morse decomposition, then

(M1,...,k−1, Mk) is also a Morse decomposition, where M1,...,k−1 is formed by the union of

M1 ∪ . . .∪Mk−1 and of all the connecting orbits between these sets. Hence, by induction,

we only need to consider the case where k = 2, and (M1, M2) is a Morse decomposition
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for I . From the definition of a Morse decomposition, we can deduce the existence of two

compact neighborhoods I1 of M1 and I2 of M2 in I with I1 ∪ I2 = I and such that M1 =

∩t>0φt(I1) and M2 = ∩t<0φt(I2). In particular, by continuity of the C̆ech cohomology

H∗(Ij) = H∗(Mj), j = 1, 2. Thus the proof of (63.1) reduces to that of the inequality

cl(I1) + cl(I2) ≥ cl(I) whenever I1 ∪ I2 = I are three compact sets. The next lemma is

devoid of dynamics:

L emma 63 .2Let I1 ∪ I2 ⊂ I be three compact sets. If i1 : I1 → I, i2 : I2 → I and

i : I1 ∪ I2 → I are the inclusion maps, then, for any α, β ∈ H∗(I),

i∗1α = 0 and i∗2β = 0⇒ i∗(α ∪ β) = 0.

Proof . We chase the diagram:

H∗(I, I1) ⊗ H∗(I, I2)
∪→ H∗(I, I1 ∪ I2)

↓ j∗1 ↓ j∗2 ↓ j∗

H∗(I) ⊗ H∗(I) ∪→ H∗(I)
↓ i∗1 ↓ i∗2 ↓ i∗

H∗(I1) ⊗ H∗(I2)
∪→ H∗(I1 ∪ I2).

The vertical sequences are exact sequences of pairs, the horizontal lines are given by Künneth

Formula. Starting on the second line of the diagram with α, β ∈ H∗(I), suppose i∗1α =

0 = i∗2β then there must be α̃ ∈ H∗(I, I1) with j∗1 α̃ = α, β̃ ∈ H∗(I, I2) with j∗2 β̃ = β.

Now j∗(α̃ ∪ β̃) = α ∪ β and hence i∗(α ∪ β) = i∗ ◦ j∗(α̃ ∪ β̃) = 0, by exactness. ��
To finish the proof of Theorem 63.1, let α1, . . . , αl be in H∗(I) and α1 ∪ . . .∪αl �= 0.

Let this product be maximum, so that cl(I) = l + 1. Order the α’s in such a way that

α1 ∪ . . . ∪ αr is the longest product not in the kernel of i∗1. In particular cl(I1) ≥ r + 1

and i∗1(α1 ∪ . . . ∪ αr ∪ αr+1) = 0. Lemma 63.2 forces i∗2(αr+1 ∪ . . . ∪ αl) �= 0 (i∗

is one-to-one here, since I1 ∪ I2 = I). Thus cl(I2) ≥ l − (r + 1) + 1 = l − r, and

cl(I1) + cl(I2) ≥ l + 1 = cl(I). ��
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B* . The Betti N umb er E stima te of Theorem 62.2 a nd C onley’s Theory

We have proven in Theorem 63.1 that, for a general function W , the number of critical

points in an invariant set I for the gradient flow of W is greater than cl(I). We now show

that if W is a Morse function, the number of critical points in I is greater than sb(h(I)).

To do so, one can either follow Floer (1989a) in his generalization of the Witten complex

(of unstable manifolds of critical points for gradient flows, see the end of Section 61) to

invariant sets. His proof relies in part on Conley’s theory. Alternatively, one can use Conley’s

generalized Morse inequalities that we state in this subsection.

Let I be a compact invariant set for a continuous flow φt on some locally compact

topological space. Let (M1, . . . , Mk) be a Morse decomposition for I . Analogously to

the cuplength estimates of Theorem 63.1, Conley-Morse inequalities relate certain betti

numbers of the Morse sets Mj to the corresponding betti numbers of I . To define the

adequate betti numbers, we need to generalize the notion of isolating block to that of index

pair for isolated invariant sets. A compact set I is an isolated invariant set if there is a

neighborhood N of I such that I = I(N) is the maximal invariant subset in N . An index

pair for an isolated invariant set is a generalization of an isolating block. Roughly, I is a pair

of compact spaces (N1, N2) such that N1\N2 is a neighborhood of I and I = I(N1\N2).

Moreover N2 plays the role of the exit set: to exit N1 ∪ N2, a point of N1 must first go

through N2, see Conley (1978), Conley & Zehnder (1984) . The fundamental property of

these sets is that the homotopy type [N1/N2, ∗] is independent of the choice of index pair

for I and hence defines a topological invariant called the Conley index of the invariant

set I . Giving less information, but easier to manipulate is the cohomology Conley index

H∗(N1, N2) = h(I), again an invariant of I . If (N1, N2) = (B, B−) for an isolating block

B, this definition of h(I) is the same as we have given in Section 62. One way to encode

the information given by h(I) is via the coefficients of the Poincaré polynomial:

p(t, h(I)) :=
∑
j≥0

tjdimHj(N1, N2).

In Conley & Zehnder (1984) , it is proven that, given a Morse decomposition (M1, . . . , Mk)

for an invariant set I of a continuous flow φt, there is a filtration N0 ⊂ N1 ⊂ . . . ⊂ Nk

such that (Nj , Nj−1) is an index pair for Mj . This is instrumental in proving the following

(Conley & Zehnder (1984) :
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Theorem 63 .3 ( C onley- M orse I neq ua lities)

(63.2)
k∑

j=1

p(t, h(Mj)) = p(t, h(I)) + (1 + t)Q(t),

where Q(t) is a polynomial with positive coefficients

This theorem is an extraordinary generalization of the classical Morse inequalities: it is

valid for any continuous flow on a locally compact space (not necessarily a manifold!).

E nd of P roof of Theorem 62.2.To retrieve the betti number estimates of Theorem 62.2,

we use the Morse decomposition of the invariant set I made of the (isolated) critical points

z1, . . . ,zN . Thanks to the Morse Lemma, we can construct an isolating block for each zj ,

and show that the Conley index of zj has the homotopy type of a pointed sphere made by

collapsing the boundary of the local unstable manifold of zj to a point. The isolating block

is denoted by S in Figure 63.1.

M c+
e

M
c+

e

M
c-
e

M
c-
e

S

x1,....., xk
(Unstable)

xk+1,....., xn

(Stable)

z

B

S-

S-

Fig. 63.1. The index pair (S, S−) retracts on (B,B−), a pair made of the local unstable
manifold of z and its boundary (a disk of dimension k equal to the index of the critical
point z and its bounding sphere). Thus h(z) = H∗(S, S−) ∼= H∗(B,B−) ∼= H∗(Sk, ∗)
which has exactly one generator in dimension k.
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Hence p(t, h(zj)) = tuj , where uj is the Morse index of zj . Now the pair (I, ∅) is an

isolating pair for I (no points exit I), and thus p(t, h(I)) =
∑

tkdimHk(I). The positivity

of the coefficients of Q in (63.2) therefore insures that there are at least dimHk(I) critical

points of index k in I . ��

C . F loer’s L emma

The following lemma, proven in Floer (1987) gives a situation where one can get a handle

on the topology of an invariant set I . It is central to the proofs of several topological results

we will use, including Proposition 62.4.

L emma 63 .4 ( F loer’s L emma )Let B be an isolating block for a flow φt on a finite

dimensional manifold, and I be its maximal invariant set. Suppose that there is a

retraction α : B → P , where P is some compact subset of B. If there is a class

u ∈ H∗(B, B−) such that :

v $→ u ∪ α∗(v) : H∗(P )→ H∗(B, B−)

is an isomorphism, then

αI
∗ : H∗(P )→ H∗(I)

is injective, where αI denotes the restriction of α to I.

(If N ⊂M are two topological spaces and i : N →M is the inclusion map, a retraction

is a map r : M → N such that r ◦ i = IdN , that is r restricts to Id on N ).

C orolla ry 63 .5Let B, I, P be as in Lemma 63.4, and let the flow φt in that lemma

be the gradient of some function W . Then the number of critical points of W is at

least cl(P ).

Proof . Since H∗(P ) → H∗(I) is injective, cl(I) ≥ cl(P ) and the Corollary is an

immediate consequence of Theorem 62.2. ��

Proof of Lemma 63.4. Define B∞ = ∩t>0φtB, the set of points that stay in B for all

negative time.
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L emma 63 .61) H∗(B, B∞ ∪B−) = 0

2) l∗ : H∗(B∞) → H∗(I(B)) is an isomorphism, where l : I(B) → B∞ is the

inclusion.

Before proving this lemma, we use it to finish the proof of Lemma 63.4. Consider the

diagram:

H∗(B, B−) ⊗ H∗(B, B∞) ∪→ H∗(B, B∞ ∪B−) = 0
↓ Id ↓ j∗ ↓ k∗

H∗(B, B−) ⊗ H∗(B) ∪→ H∗(B, B−)
↓ i∗

H∗(B∞)
l∗
∼→ H∗(I)

where all vertical maps are induced by inclusions, and the two first horizontal maps are given

by Künneth Formula. Suppose αI
∗v = 0 for some v ∈ H∗(P ). Since l∗ is an isomorphism

and αI = αB∞ ◦ l , 0 = αI
∗ = l∗(αB∞)∗v ⇒ (αB∞)∗v = 0. Since αB∞ = α ◦ i,

0 = αB∞
∗v = i∗α∗v. The middle, vertical sequence is the exact sequence of a pair. Hence

there is a w ∈ H∗(B, B∞) such that j∗w = α∗v. But u∪ α∗v = k∗(u∪w) = k∗(0) = 0.

The hypothesis of Lemma 63.4 forces v = 0. ��

Proof of Lemma 63.6. Let Bt = φt(B) and B∞ = ∩t>0Bt as before. Note in particular

that, in the Hausdorff topology, limt→+∞Bt = B∞, and limt→0 Bt = B. To the triple of

spaces (B, Bt ∪B−, B−) corresponds the exact sequence:

(63.3)

. . .
δ∗→H∗(B, Bt ∪B−)→ H∗(B, B−) i∗→H∗(Bt ∪B−, B−)δ

∗
→H∗−1(B, Bt ∪B−) . . . ,

(see eg. Dubrovin & al. (1987) ). We now show that i∗ is an isomorphism. Consider the

diagram:

(Bt ∪B−, B−)
i1
↗ ↓ i

(Bt, B− ∩Bt) i2−→ (B, B−)
.

The excision theorem implies that i∗1 is an isomorphism, and the continuity of the C̆ech

cohomology implies that i∗2 is an isomorphism. Since the diagram commutes, i∗ must be
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an isomorphism. But this forces H∗(B, Bt ∪ B−) = 0 in (63.3). Taking the limit of this

equality as t→∞ proves 2).

Using the long exact sequence of the pair (B∞, I), the map l∗ induced by the inclusion

l : I → B∞ is an isomorphism whenever H∗(B∞, I) = 0, which we proceed to show.

Note that φ−tB∞ ⊂ B∞ and, by definition, I = ∩t≥0φ−t(B∞). Consider the maps:

(B∞, φ−tB∞)
φ−t→ (φ−tB∞, φ−tB∞)

j→ (B∞, φ−tB∞),

where j is the inclusion. The map j ◦ φ−t is clearly homotopic to Id, hence

H∗(B∞, φ−tB∞) ∼= H∗(φ−tB∞, φ−tB∞) = 0.

Since this is true for all t, the continuity of the C̆ech cohomology concludes. ��

D . P roof of P rop osition 62.4

To prove this proposition, we let the manifold M play the role of P in Lemma 63.4.

The retraction α of that lemma is given here by the canonical projection α : B → M .

Clearly the projection of B onto M ×D− is a deformation retract, which deforms B− onto

M×∂D−. Hence H∗(B, B−) ∼= H∗(M×D−, M×∂D−). Now, Künneth Formula gives

an isomorphism:

H∗(M)⊗H∗(D−, ∂D−)
∪
∼→ H∗(M ×D−, M × ∂D−)

where, as suggested by the notation, one gets all of the classes in the right hand side

vector space as cup products of classes in the two left hand side spaces (with the appro-

priate identifications given by the inclusion maps). But, letting n = dimD−, we have

H∗(D−, ∂D−) ∼= H∗(Sn, ·), which has exactly one generator u in dimension n.

Hence H∗+n(B, B−) ∼= H∗(M) and sb(h(I)) = sb(M) where I is the maximal

invariant set in B. This and Theorem 62.2 yield the Betti number estimate. The homeo-

morphism H∗(M) ∼= H∗(B, B−) is of the type prescribed by Lemma 63.4. This implies

that the induced map H∗(M) → H∗(I) is injective and hence cl(I) ≥ cl(M). This fact

and Theorem 62.2 give the cuplength estimate. ��
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E * . F loer’s Theorem of G lob a l C ontinua tion of Hyp erb olic I nv a ria nt S ets.

Floer’s Lemma 63.4 is the cornerstone to the proof of the following theorem, where he

makes good use of the powerful property of “invariance under continuation” of the Conley

Index. This theorem illustrates the power of Conley’s theory, and shows the historical root

of Floer Cohomology. Note that, in the theory of dynamical systems, the hyperbolicity of

an invariant set for a dynamical system is intimately related to its persistence under small

perturbations of the system: this relationship is the core of many theorems on structural

stability. What is interesting about the following theorem (and Conley’s theory in general)

is that it provides situations when the (rough) persistence of an invariant set can be proven

for arbitrarily big perturbations.

The notion of continuation of invariant sets makes use of the simple following fact: an

index pair for a flow φt will remain an index pair for all flows that are C0 close to φt. Two

isolated invariant sets for two different flows φt
0, φt

1 are related by continuation if there is

a continuous curve φt
λ of flows joining them which can be (finitely) covered by intervals (in

λ) of flows having the same index pair. The following theorem appeared as Theorem 2 in

Floer (1987)to which we refer the reader for a proof. It can be seen as an instance of weak,

but global, stability of normally hyperbolic invariant sets, which we now define. An invariant

set G is normally hyperbolic for a flow φt on a manifold N if there is a decomposition:

TN
∣∣
G

= TG⊕ E+ ⊕ E−

which is invariant under the covariant linearization of the vector field V corresponding to

φt with respect to some metric 〈 , 〉, so that for some constant m > 0:

(63.4) 〈ξ, DV ξ〉 ≤ −m〈ξ, ξ〉 (resp. ≥ +m〈ξ, ξ〉) for ξ ∈ E− (resp. E+)

Theorem 63 .7 ( F loer)Let φt
λ be a continuous one parameter family of flows on a C2

manifold N . Suppose that G0 is a compact C2 submanifold invariant under the flow

φt
0. Assume that G0 is normally hyperbolic for the flow φt

0 and suppose that there

is a retraction α : N → G0. Finally, suppose that there is a family Gλ of invariant

sets for φt
λ which are related by continuation to G0 . Then the map:

α
∣∣∗
Gλ

: H∗(G0)→ H∗(Gλ)

in C̆ech cohomology is injective.


