
Appendix 1

OVERVIEW OF SYMPLECTIC
GEOMETRY

Symplectic geometry is the language underlying the theory of Hamiltonian systems.

This appendix is a short review of the main concepts, especially as they apply to Hamiltonian

systems and symplectic maps in cotangent bundles. These spaces are natural when consid-

ering mechanical systems, where the base, or configuration space describes the position

and the momentum belongs to the fiber of the cotangent bundle of the configuration space.

In our optic of symplectic twist maps, one important concept studied in this chapter is that

of exact symplectic map. Theorem 59.7 proves that Hamiltonian systems give rise to exact

symplectic maps.

We assume here some familiarity with the notions of manifold, vector bundle and

differential form. The reader who is uncomfortable with these concepts should consult

Guillemin & Pollack (1974) , Spivak (1970) or Arnold (1978). For more on symplectic

geometry and Hamiltonian systems, see Arnold (1978), Weinstein (1979), Abraham &

Marsden (1985) or McDuff & Salamon (1996).

54. Symplectic Vector Spaces

In this section, we review some essentials of the linear theory of symplectic vector spaces

and transformations. They will be our tools in understanding the infinitesimal behavior of

symplectic maps and Hamiltonian systems in cotangent bundles. A symplectic form Ω on

a real vector space V is a bilinear form Ω which is skew symmetric and nondegenerate:
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Ω(av + bv′,w) = aΩ(v,w) + bΩ(v′,w), (v,v′,w ∈ V, a, b ∈ IR).

Ω(v,w) = −Ω(w,v)

v �= 0⇒ ∃w such that Ω(v,w) �= 0

A symplectic vector space is a vector space V together with a symplectic form.

Example 54.1 The determinant in IR2 is a symplectic form. More generally, the canonical

symplectic form on IR2n, is given by:

(54.1) Ω0(v,w) = 〈Jv,w〉, J =
(

0 −Id
Id 0

)

where the brackets 〈 , 〉 denote the usual dot product. We will see in the next theorem that

all symplectic vector spaces “look” like this. In particular, their dimension is always even.

Usually, one writes:

Ω0 = dq ∧ dp =
n∑
k=1

dqk ∧ dpk

where it is understood that dqk, dpk are elements of the dual basis for the coordinates

(q1, . . . , qn, p1, . . . , pn) of IR2n. One can view dqk ∧ dpk(v,w) as the determinant of

the projections of v and w on the plane of coordinates (qk, pk) (see Exercise 54.5 ). The

symplectic space (IR2n, Ω0) can also be interpreted as IRn ⊕ (IRn)∗, equipped with the

canonical symplectic form:

Ω0(a⊕ b, c⊕ d) = d(a)− b(c).

It is often convenient to view a bilinear form as a matrix. To do this, fix a basis

(e1, . . . ,en) of V , and set:

AΩij = Ω(ei, ej)

Equivalently, if 〈 , 〉 is the dot product associated with the basis (e1, . . . ,en), then AΩ is

the matrix satisfying:

Ω(v,w) = 〈AΩv,w〉.

With any bilinear form Ω on a vector space comes a notion of orthogonal subspace W⊥

to a given subspace (or vector) W :

W⊥ = {v ∈ V | Ω(v,w) = 0,∀w ∈W}
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In the case of symplectic forms, the analogy with the usual notion of orthogonality can be

quite misleading, as a subspace and its orthogonal will often intersect. We now show that

all symplectic vector spaces are isomorphic to the canonical (IR2n, Ω0).

Theorem 54.2 (Linear Darboux) If (V,Ω) is a symplectic space, one can find a basis

for V in which the matrix AΩ of Ω is given by AΩ = J =
(

0 −Id
Id 0

)
.

Hence, the isomorphism that sends each vector in V to its coordinate vector in the basis

given by the theorem will be an isomorphism between (V,Ω) and (IR2n, Ω0). In classical

notation, the coordinates in the Darboux coordinates are denoted by(20)

(q,p) = (q1, . . . , qn, p1, . . . , pn).

Note in particular that a symplectic space always has even dimension.

Proof of Theorem 54.2. Since Ω is nondegenerate, given any v �= 0 ∈ V , we can find a

vector w ∈ W such that Ω(v,w) = −1. In particular, the plane P spanned by v and w is

a symplectic plane and the bilinear form induced by Ω on P with this basis has matrix:

(54.2)
(

0 −1
1 0

)
.

Since Ω is nondegenerate on P , we must have P⊥ ∩P = {0}. Furthermore V = P +P⊥,

since if u ∈ V ,

u−Ω(u,v)w + Ω(u,w)v ∈ P⊥.

Ω must be nondegenerate on the subspace P⊥ of dimension dimV − 2, so we can proceed

by induction, and decompose P⊥ into Ω–orthogonal planes on which the matrix of Ω is as

in (54.2). A permutation of the vectors of the basis we have found gives AΩ = J . ��

Exercise 54.3 Show that the linear transformation whose matrix is J in the canonical basis
is orthogonal (i.e belongs to O(2n)), that it satisfies J2 = −Id (J is then called a complex
structure) as well as

20In the literature, one also sees frequently (p, q), with −J =

(
0 Id
−Id 0

)
as canonical

matrix.
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Ω0(Jv, Jw) = Ω0(v,w)

(that is, J is symplectic, see section 56).

Exercise 54.4 Show that a one dimensional vector subspace in a symplectic vector space
is included in its own orthogonal subspace.

Exercise 54.5 Show that in a Darboux basis for a symplectic plane,

Ω(v,w) = det(v,w).

Hence the form
∑n

1
dqk ∧ dpk applied to 2 vectors can be seen as the sum of minor

determinants of these two vectors (see Arnold (1978)).

Exercise 54.6 Prove that a general skew symmetric (not necessarily nondegenerate) form
Ω can be put, by an appropriate change of variable, into the “normal form”:

AΩ =

(
0k −Idk
Idk 0k

0l

)

where the integers k, l do not depend on the basis chosen.

55. Subspaces of a Symplectic Vector Space

Let V be a symplectic vector space of dimension 2n, W ⊂ V a subspace, and ΩW the

symplectic form restricted to W . The previous exercise shows that we can find a basis for

W in which :

AΩW =


 0k −Idk

Idk 0k
0l


 with dimW = 2k + l

Furthermore, even though there may be many bases in which ΩW has a matrix of this form,

k and l are independent of the choice of such a basis. In other words, (W,ΩW ) is determined

up to isomorphism by its dimension and by k. We will say that W is:

• null or isotropic if k = 0 (and l = dimW ),

• coisotropic if k + l = n.

• Lagrangian if k = 0 and l = n (i.e. W is isotropic and coisotropic).

• symplectic if l = 0 and k �= 0.

The rank of W is the integer 2k.

The next theorem tells us that the qualitatively different subspaces of a symplectic space

can be represented by coordinate subspaces in some Darboux coordinates.
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Theorem 55.1 A subspace W of rank 2k and dimension 2k + l in a symplectic

space can be represented, in appropriate Darboux coordinates, by the subspace of

coordinates:

(q1, . . . , qk+l, p1, . . . , pk).

In particular, in some well chosen bases, an isotropic space is made entirely of q’s and

a coisotropic one must have at least n q’s (the role of p’s and q’s can be reversed, of course)

and a symplectic space has the same number of q’s and p’s.

Proof . From the definition of the rank of W , there is a subspace U of W of dimen-

sion 2k which is symplectic, on which we can put Darboux coordinates. U⊥ ∩ W , the

null space of ΩW , is in the subspace U⊥, which is symplectic (see Exercise 55.4 ).

The next lemma shows that we can complete any basis of U⊥ ∩ W with coordinates

that we denote by (qk+1, . . . , qk+l) into a symplectic basis of U⊥, with coordinates

(qk+1, . . . , qk+l, pk+1, . . . , pk+l). The union of this basis and the one for U (of coordi-

nates say (q1, . . . , qk, p1, . . . pk)) is a symplectic basis, in which W can be expressed as

advertised. ��

Lemma 55.2 Let U be a null (i.e. isotropic) subspace of a symplectic space V Then

one can complete any basis of U into a symplectic basis of V .

Proof . Without loss of generality, V is IR2n with its standard dot product and canonical

symplectic form. Choose an orthonormal basis (u1, . . . , ul) for U (in the sense of the dot

product). Using (54.1) and the results of Exercise 54.3, the reader can easily check that JU is

orthogonal to U and that (u1, . . . , ul, Ju1, . . . , Jul) is a symplectic basis for E = U ⊕JU .

From Exercise 55.4, E⊥ ⊕E = V and E⊥ is symplectic. We can complete the symplectic

basis of E by any symplectic basis of E⊥ and get a symplectic basis for V . ��
As a simple consequence of Theorem 55.1, we get:

Corollary 55.3 If U is an isotropic subspace of a symplectic space V , one can find a

coisotropic W such that V = U ⊕W . One can also find a Lagrangian subspace in

which U is included.
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This applies in particular to Lagrangian subspaces: given any Lagrangian subspace L,

we can find another one L′ such that V = L⊕L′. In the normal coordinates of the theorem,

L could be the q coordinate subspace and L′ the p coordinate subspace.

Exercise 55.4 Let W be a subspace of a symplectic space V . Show that: W is symplectic
⇐⇒ W ⊕W⊥ = V ⇐⇒ W⊥ is symplectic (Hint. see the proof of the Linear Darboux
theorem).

Exercise 55.5 Show that:

W isotropic ⇐⇒W ⊂W⊥.

W coisotropic ⇐⇒W⊥ ⊂W .

W is Lagrangian⇐⇒W is a maximal isotropic subspace, or minimal coisotropic subspace
(for the inclusion).

Note that the above equivalence are the definition most often seen in the literature.

Exercise 55.6 This exercise shows how symmetric matrices can be used to locally pa-
rameterize the space of Lagrangian planes. Suppose you are given a basis v1, . . . vn for a
Lagrangian subspace L of IR2n. In the canonical coordinates (q, p), write vk = (xk, yk).
Let X and Y be the n × n matrices whose columns are the xk’s and yk’s respectively.
Suppose that L is a graph over the q–plane.

(a) Show that X is invertible and that the column vectors of the 2n×n matrix

(
I

Y X−1

)
form a basis for L.

(b) Show that the matrix Y X−1 is symmetric.

(c) Deduce from this that the (Grassmanian) space of Lagrangian subspaces of IR2n has
dimension n(n+ 1)/2.

56. Symplectic Linear Maps

The Symplectic Group. The Linear Darboux Theorem tells us that, up to changes of co-

ordinates, all symplectic vector spaces are identical to (IR2n, Ω0). Therefore, as we define

and study the transformations that preserve the symplectic form on a vector space, we need

only consider the case (IR2n, Ω0).

Definition 56.1 A symplectic linear map Φ of (IR2n, Ω0) is a 1 to 1 linear map which

leaves invariant the symplectic form:

(56.1) Φ∗Ω0 = Ω0, where Φ∗Ω0(v,w) def= Ω0(Φv, Φw).
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The group formed by symplectic linear maps is called the symplectic group and is denoted

by Sp(2n; IR), or in short Sp(2n). Because of (56.1) and (54.1), this group is naturally

identified with the group of 2n× 2n real matrices Φ that satisfy:

(56.2) ΦtJΦ = J

Examples 56.2

(a) The group Sp(2) is the group of 2× 2 matrices of determinant 1.

(b) The transformationF (q,p) = (q+p,p), with matrix

(
Id Id
0 Id

)
is symplectic in IR2n,

and so is any with matrix

(
Id A
0 Id

)
, where At = A. These maps are called completely

integrable as they preserve the n dimensional foliation of (affine) Lagrangian planes {p =

constant}.
(c) The examples of symplectic linear map this book is most concerned with are the differ-

entials of symplectic twist maps and of the time 1 map of Hamiltonian flows.

Spectral Properties of Symplectic Maps.

Theorem 56.3 Symplectic linear maps have determinant 1. If λ is an eigenvalue of

a symplectic linear map, so is λ−1, and they appear with the same multiplicity. If λ

is a complex eigenvalue, then so are λ−1, λ, λ
−1

, all with the same multiplicity.

Proof . Let Φ be a symplectic map. It is not hard to see that :

dq1 ∧ . . . ∧ dqn ∧ dp1 ∧ . . . ∧ dpn =
(−1)[n/2]

n!
Ω0 ∧ . . . ∧Ω0

where [n/2] is the integer part of n/2. Since Φ preserves the right hand side of this equation,

it must preserves the left hand side, i.e., the volume. Hence det Φ = 1. The rest of the

theorem is a consequence of the fact that the characteristic polynomial C(λ) of a symplectic

transformation Φ has real coefficients and that, by (56.2), Φt is similar to Φ−1:

Φt = JΦ−1J−1.

��
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Dynamical Type of the Origin as Fixed Point. The origin is a fixed point for any linear map.

Its dynamical properties (i.e. how orbits under the iteration of the map of points close to the

origin behave) are entirely given by its spectrum. In particular the stability (i.e. whether

points near 0 stay in a neighborhood of 0) of the fixed point is function of the spectrum: if

any eigenvalue is greater than 1 in modulus, the fixed point is unstable. Conversely, if all

the eigenvalues are within the unit disk, the fixed point is stable. In symplectic maps, by

Theorem 56.3, stability can only occur when all the eigenvalues are on the unit circle. In this

case the fixed point is called elliptic if all its eigenvalues are distinct from ±1 or parabolic

if all its eigenvalues are±1. On the other extreme, the origin is a hyperbolic fixed point for

a symplectic linear map when no eigenvalue is on the unit circle. In this case, we can’t have

stability since, by Theorem 56.3 necessarily half of the eigenvalues have modulus greater

than 1. Hence, in this case, the stable and unstable manifold (the n–dimensional union

of eigensubspaces with eigenvalues larger (resp. smaller) than 1 in absolute value) are each

n dimensional. These manifolds are also Lagrangian (see Proposition 36.1 and Exercise

36.3). Note that hyperbolicity can come in different flavors: Inversion hyperbolic (when all

eigenvalues are negative) or spiral hyperbolic, when some of the eigenvalues are not real.

Finally, a general fixed point exhibits a combination of elliptic, parabolic and hyperbolic

behaviors, each in different even dimensional eigenspaces.

Exercise 56.4 (a) Show that if a 2n×2n matrix Φ is given by its n×n block representation:

Φ =

(
a b

c d

)
,

then Φ is symplectic if and only if abt = bat, cdt = dct, adt − bct = Idn.

(b) Show that

Φ−1 =

(
dt −bt
−ct at

)
.

In particular, if Φ is symplectic, so are Φ−1 and Φt (this can also be shown directly from
(56.2) ).

Exercise 56.5 The groups of 2n× 2n real matrices Gl(n,C) and O(2n) are defined by:

Φ ∈ Gl(n,C)⇔ ΦJ = JΦ; Φ ∈ O(2n)⇔ ΦtΦ = Id

Show that if Φ is in any two of the groups Sp(2n), O(2n), Gl(n,C), it is in the third. Show
that, in this case, we can write:
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Φ =

(
a −b
b a

)
with

{
atb = bta

ata+ btb = Id

that is, the complex matrix a+ ib is in the unitary group U(n).

Exercise 56.6 (a) Show that, when ±1 is an eigenvalue of Φ ∈ Sp(n), it must appear with
even multiplicity.

(b) Show that if λ, λ′ are eigenvalues of Φ with eigenvectors v, v′ and λλ′ �= 1 then
Ω0(v, v

′) = 0.

(c) Deduce from (b) that, if Φ is hyperbolic, its (un)stable manifold is Lagrangian.

Exercise 56.7 (a) Show that any nonsingular, real matrix Φ has the polar decomposition:
Φ = PO where P = (ΦΦt)1/2 is symmetric positive definite, and O = ΦP−1 is orthog-
onal (Hint. to make sense of (ΦΦt)1/2, note that ΦΦt is symmetric, positive, and hence
diagonalizable with positive diagonal terms).

(b) Show that if Φ is symplectic, then P and O are also symplectic.(Hint. Prove it for P
by decomposing IR2n into eigenspaces for ΦΦt. Notice, in particular, that O ∈ U(n), by
Exercise 56.5.

(c) Show more generally that (ΦΦt)α is symplectic for all real α, and deduce from this that
U(n) is a deformation retract of Sp(2n).

57. Symplectic Manifolds

Let N be a differentiable manifold. A symplectic structure on N is a family of symplectic

forms on the tangent spaces of N which depends smoothly on the base point and has

a certain nondegeneracy condition. More precisely, a symplectic structure is given by a

closed nondegenerate differential 2–form Ω:

dΩ = 0 and, for all z ∈M,v �= 0 ∈ TzM,∃w ∈ TzM such that Ω(v,w) �= 0.

Ω is called a symplectic form and (M,Ω) a symplectic manifold. A symplectic map

or symplectomorphism between two symplectic manifolds (N1, Ω1) and (N2, Ω2) is a

differentiable map F : N1 → N2 such that:

F ∗Ω2 = Ω1.

In other words, the tangent space at each point of a symplectic manifold is a symplectic

vector space, and the differential of a symplectic map at a point is a symplectic linear map

between symplectic vector spaces.
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Example 57.1 (a) Once again , the canonical example of symplectic manifold is given by

(IR2n, Ω0), where IR2n is thought of as a manifold. The tangent space at a point is identified

with IR2n itself, and the form Ω0 is a constant differential form on this manifold.

(b) Any surface with its area form is a symplectic manifold. Symplectic maps in dimension

2 are just area preserving maps.

(c) Kähler manifolds (see McDuff & Salamon (1996)) are symplectic.

(d) Cotangent bundles are non compact symplectic manifolds (see Section 58) and time 1

maps of Hamiltonian vector fields on them are symplectic maps.

The fundamental theorem by Darboux (of which we have proven the linear version)

says that locally, all symplectic manifolds are isomorphic to (IR2n, Ω0). See Arnold (1978),

Weinstein (1979) or McDuff & Salamon (1996) for a proof of this.

Theorem 57.2 (Darboux) Let (N,Ω) be a symplectic manifold. Around each point of

N , one can find a coordinate chart (q,p) such that :

Ω =
n∑
1

dqk ∧ dpk := dq ∧ dp.

Hence all 2n–dimensional symplectic manifolds are locally symplectomorphic. This

is in sharp contrast with Riemannian geometry where, for example, the curvature is an

obstruction for two manifolds to be locally isometric.

Submanifolds Of Symplectic Manifolds. Submanifolds of a symplectic manifold can

inherit the qualitative features of their tangent spaces: A submanifold Z ⊂ (N,Ω) is

(co)isotropic if each of its tangent spaces is (co)isotropic in the symplectic tangent space of

N . Hence a Lagrangian submanifold is an isotropic submanifold of dimensionn = 1
2dimN .

Any curve on a surface is a Lagrangian submanifold. The 0-section and the fiber of the cotan-

gent bundle of a manifold are Lagrangian submanifolds, and so is the graph of any closed

differential form (see next Section 58.C).

Exercise 57.3 Show the following:

(a) Any symplectic manifold has even dimension.
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(b) If (N,Ω) is a 2n dimensional symplectic manifold, then Ωn is a volume form.

(c) A symplectomorphism is a volume preserving diffeomorphism.

Exercise 57.4 Let (N,Ω) be a symplectic manifold and F : N → N a symplectomorphism.
Show that the set graph F is a Lagrangian submanifold of (N ×N,Ω ⊕ (−Ω))

58. Cotangent Bundles

A. Some Definitions

Let M be a differentiable manifold of dimension n. Its cotangent bundle T ∗M
π→M is the

fiber bundle whose fiber T ∗qM at a point q of M is the dual to the fiber TqM of the tangent

bundle. The elements of T ∗qM are cotangent vectors or linear 1–forms, based at q. Given

local coordinates (q1, . . . , qn) in a chart of M , one usually denotes a tangent vector v by:

v =
n∑
1

vk
∂

∂qk

where ∂
∂qk

denotes the tangent vector to the k th coordinate line at the point q considered.

A cotangent vector p at the point q takes the form:

(58.1) p =
n∑
1

pkdqk

Where dqk denotes the 1–form dual to ∂
∂qk

:

dqj

(
∂

∂qk

)
= δjk

def=
{

0 if j �= k,
1 if j = k

.

Once the system of coordinates q = (q1, . . . , qn) is chosen, the coordinates p =

(p1, . . . , pn) for T ∗qM as defined by (58.1) are uniquely determined, and we call them

the conjugate coordinates. We will also refer to the pair (q,p) as a chart of conjugate

coordinates. The cotangent bundle T ∗M as a smooth union of the fibers T ∗qM is a differ-

entiable manifold of dimension 2n, with local coordinates (q,p) as presented above. More

precisely, ifQ
Ψ→ q is a coordinate change between two charts U and V of M , above which

T ∗M is trivial, then :

Ψ∗(q,p) = (Q,P ) =
(
Ψ−1(q), DΨ tq(p)

)
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is a change of coordinates between the corresponding charts V × IRn and U × IRn of T ∗M .

This law of change of coordinates is what distinguishes tangent vectors from cotangent vec-

tors. More generally, given a (local) diffeomorphism F : M → N between two manifolds

M and N , there is (locally) an induced pull–back map: F ∗ : T ∗N → T ∗M which can be

written F ∗(q,p) = (F−1(q), DF tq(p)) in conjugate coordinates.

Example 58.1 (a)IR2n ∼= IRn⊕(IRn)∗ can be seen as the cotangent bundle of the manifold

IRn: this bundle is trivial, as any bundle over a contractible manifold.

(b)The cotangent bundle of Tn is Tn×IRn. That T ∗Tn is trivial is a consequence of the fact

that Tn = IRn/ZZn, where ZZn acts as a group of translations on IRn, whose differentials

are the Id. See the following exercise.

Exercise 58.2 More generally, if M ∼= IRn/Γ where Γ is a group of diffeomorphisms of IRn

acting properly discontinuously (i.e. around each point q of M there is a neighborhood
U(q) such that U ∩ (Γ\Id)(U) = ∅), then

T ∗M ∼= IR2n/Γ ∗

where Γ ∗ is the set of pullback diffeomorphisms of IR2n of the form γ∗, where γ ∈ Γ .

B. Cotangent Bundles as Symplectic Manifold

We now show that there is a natural symplectic structure on T ∗M . We first construct a

canonical differential 1–form called the Liouville form which, as we will prove, has the

following expression in any set of conjugate coordinates:

λ =
n∑
1

pkdqk = pdq.

We then obtain a symplectic form by differentiating λ:

Ω = −dλ, Ω = dq ∧ dp,

the latter holding in any conjugate coordinate system. We first present a coordinate free

construction of λ. To define a 1–form on T ∗M , it suffices to determine how it acts on any

given tangent vector v in a fiber Tα(T ∗M) of the tangent space of T ∗M . Since the base

point α is in T ∗M , it is a linear 1–form on T ∗qM for q = π(α). Let π : T ∗M →M be the
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canonical projection. The derivative π∗ : T (T ∗M) → TM takes a vector v to the vector

π∗v in TqM . We can evaluate the 1–form α on that vector, and define:

λ(v) = α(π∗v)

We now compute λ in a local, conjugate coordinate chart (q,p) of T ∗M . Write:

α =
∑

αkdqk and v = vq
∂

∂q
+ vp

∂

∂p
.

Then π∗(v) = vq
∂
∂q and α(π∗v) =

∑
αkvqk which exactly says that λ = pdq. ��

Exact Symplectic Maps on Cotangent Bundles. That the symplectic form Ω is exact

(i.e. the differential of 1-form, here λ) on a cotangent bundle enables us to single out the

important class of exact symplectic maps. Indeed, if a mapF : T ∗M → T ∗M is symplectic

in T ∗M then the form F ∗λ−λ is closed: d(F ∗λ−λ) = F ∗dλ−dλ = −(F ∗Ω−Ω) = 0.

This justifies the following

Definition 58.3 A map F : T ∗M → T ∗M is exact symplectic if the 1 form F ∗λ − λ is

exact:

F ∗λ− λ = dS

for some real valued function S on T ∗M .

We will see in Section 59 that time t maps of Hamiltonian flows are exact symplectic.

So are most of the maps in this book. Note that in IR2n, since any closed form is exact,

symplectic and exact symplectic are two equivalent properties. On the other hand, the map

(x, y)→ (x, y + a), a �= 0, of the cylinder is an example of a map which is symplectic but

not exact symplectic.

Remark 58.4 1) The term exact diffeomorphism, or even exact symplectic diffeomorphism

is sometimes used to denote the time 1 map of a (time dependent) Hamiltonian system. But

it can be shown that the map (q,p) �→ (q + Ap,p), A =
(

2 1
1 1

)
is exact symplectic

according to our definition, but not isotopic to Id (true more generally whenever A is not

homotopic (cannot be deformed) to I on T2, see Exercise 23.4). Hence these maps cannot

be time–1 maps of Hamiltonians.
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2) Cotangent bundles are just one example, albeit the most important one, of exact symplectic

manifolds: symplectic manifolds whose symplectic form is exact. Many facts that are true

for cotangent bundles also hold for exact symplectic manifolds.

Exercise 58.5 Show that the set of exact symplectic maps forms a group under composition.
In particular, show that if G∗λ− λ = SG and F ∗λ− λ = SF then

(F ◦G)∗λ− λ = d[(SF ◦G) + SG].

Exercise 58.6 Show that a map F of T ∗M is exact symplectic if and only if :∫
Fγ

pdq =

∫
γ

pdq

for all differentiable closed curve γ.

C. Notable Lagrangian Submanifolds of Cotangent Bundles

It is not hard to see that the fibers of T ∗M are Lagrangian submanifolds: in coordinates

they are given by {q = q0} and hence their tangent space is of the form {q = 0}. Likewise,

the zero section 0∗M of T ∗M is Lagrangian. Another class of example is of importance

to us in Chapter 10. Consider a function W : M → IR. Its differential dW can be seen

as a section of T ∗M , i.e. a map M → T ∗M whose image dW (M) can be written as

{(q, dW (q)) | q ∈ M}. Hence, a basis for the tangent space of dW (M) at a point

(q, dW (q)) is given by:

vk =
∂

∂qk
+

n∑
j=1

∂2W (q)
∂qj∂qk

∂

∂p j

It is not hard to see that:

Ω(vk,vl) =
∂2W (q)
∂qk∂ql

− ∂2W (q)
∂ql∂qk

= 0,

so that dW (M) is a Lagrangian submanifold of T ∗M . We can generalize this argument

somewhat. Any 1–form α can be seen as a map from M to T ∗M , so we can ask the

question: for what α is α(M) a Lagrangian manifold ? To answer this question, one can

check (Exercise 58.7) the following formula:

(58.2) α∗λ = α.
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where λ is the Liouville form (the reader has to get used to the fact that we see α either as

a form or a map, at our convenience. When seen as a map, α is actually an embedding of

M into T ∗M ). The manifold α(M) is Lagrangian exactly when:

0 = α∗Ω = α∗(−dλ) = −d(α∗λ) = −dα,

that is, exactly when α is a closed form. In particular, if the form α is exact with α = dW ,

this gives another proof that dW (M) is Lagrangian.W is the simplest instance of generating

function for the Lagrangian manifold α(M) = dW (M) (generating phase or generating

phase function is also used). We expend on this important notion of symplectic topology in

Chapter 10.

Exercise 58.7 Verify Formula (58.2) using local coordinates.

59. Hamiltonian Systems
A. Lagrangian Systems Versus Hamiltonian Systems

Euler-Lagrange Equations. A lot of mechanical systems can be put in terms of a variational

problem. In these systems, under the principle of least action, trajectories are critical points

of an action functional of the form:

A(γ) =
∫ t1

t0

L(q, q̇, t)dt,

with boundary condition γ(t0) = q0, γ(t1) = q1 (q(t) is the parameterization of γ in

the above integral). The function L is twice differentiable in each variables, say (absolute

continuity is enough). It is called the Lagrangian function of the system. As this is a

somewhat heuristic discussion, we will not specify here the functional space to which γ

belongs. In concrete cases (say γ ∈ C1([t0, t1]), IRn) or C1([t0, t1],M), or some Sobolev

space of parameterized curves), the following can be made quite rigorous.

To compute the differential of A, one applies a small variation δγ to γ, with δγ(t0) =

δγ(t1) = 0. Then:

δA(γ) =
∫ t1

t0

(
∂L

∂q
(q, q̇, t)δq +

∂L

∂q̇
(q, q̇, t)δq̇

)
dt.

Performing an integration by parts on the second term of this integral, we get:
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δA(γ) =
∫ t1

t0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt

For γ to be a critical point, the above integral must be 0. Since this should be true for any

variation δγ, we must have:

(59.1)
∂L

∂q
− d

dt

∂L

∂q̇
= 0,

which is a second order differential equation in q called the Euler-Lagrange equations.

(The plural to “equations” just refers to the fact that the dimension is usually greater than

1). As an example, a large number of mechanical systems have a Lagrangian function of

the form:

L(q, q̇, t) =
1
2
‖q̇‖2 − Vt(q).

(“Kinetic - potential”. The time dependence of V usually refers to some forcing) where

V : IRn → IR. The Euler–Lagrange equations for such a system are:

(59.2) q̈ +∇Vt(q) = 0,

which, in mechanical cases, can be seen as the expression of Newton’s Law: acceleration is

proportional to the the force.

From Lagrange to Hamilton. To solve the O.D.E. (59.2) , one usually proceeds by intro-

ducing p = q̇ to get a system of first order ODE’s:

q̇ = p

ṗ = −∇V (q).

As we will see presently, we have just put the Lagrangian problem into a Hamiltonian form.

In general, if the following Legendre Condition:

(59.3) det
∂2L

∂q̇2 �= 0,

is satisfied, we can introduce

p =
∂L

∂q̇

to transform the Euler–Lagrange equations (59.1) into a system of first order O.D.E.’s:

because of the nondegeneracy condition (59.3), the implicit function theorem implies that,

locally, we can make a change of variables :
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(59.4) L : (q, q̇)→ (q,p =
∂L

∂q̇
)

This is, when q is seen as a point on a manifold M , a local diffeomorphism between

TqM and T ∗qM (see Exercise 59.2 ). This change of variables is called the Legendre

transformation.(21) Define the Hamiltonian function by:

H(q,p, t) = pq̇ − L(q, q̇, t),

Where it is understood that q̇ = q̇ ◦ L−1(q,p). We can compute:

∂H

∂q
=p

∂q̇

∂q
− ∂L

∂q
− ∂L

∂q̇

∂q̇

∂q
= −∂L

∂q
,

∂H

∂p
=q̇ + p

∂q̇

∂p
− ∂L

∂q̇

∂q̇

∂p
= q̇.

But the Euler-Lagrange equations imply that:

ṗ =
d

dt

∂L

∂q̇
=

∂L

∂q
= −∂H

∂q
.

Combining this with the previous formula yields Hamilton’s equations:

(59.5)
q̇ = Hp

ṗ = −Hq.

Remark 59.1 (a) The Legendre transformation is involutive: it is its own inverse, in the

following sense. The map (q, q̇)→ (q, ∂L∂q̇ = p) has inverse:

(q,p)→ (q,
∂H

∂p
= q̇)

and L is the Legendre transformed of H in the sense that:

L(q, q̇, t) = pq̇ −H(q,p, t)

where p = p(q, q̇, t) is given implicitly by ∂H
∂p = q̇ (to see that this is all legal, see Exercise

59.3which shows that if L satisfies the Legendre condition, so does H).

21In the classical literature the term Legendre transformation refers to the complete process
of changing the Lagrangian L into the Hamiltonian H as shown in this section, and H
is then called the Legendre transformation of L. It is grammatically less awkward to call
H the Legendre transformed of L, which we do in this book.
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(b) In the new coordinates, the action functional becomes:

A(γ) =
∫
γ

pdq −Hdt

where γ is seen as a curve (q(t),p(t), t) in the extended phase space IR2n×IR, orT ∗M×IR.

Symplectic formulation of Hamilton’s Equations. Hamilton’s equations have a natural

expression in the symplectic setting. We assume for now that q is in IRn. Using the notation

Ht(q,p) = H(q,p, t), we can rewrite (59.5) as

ż = −J∇Ht(z)
def
:= XH(z, t).

where ∇Ht =
(
Hq
Hp

)
is the gradient of Ht with respect to the scalar product on IR2n:

〈∇Ht,v〉 = dHt(v)

Likewise, XH , which we call the Hamiltonian vector field can be seen as the symplectic

gradient of Ht:

Ω0(XH ,v) = 〈−J2∇Ht,v〉 = 〈∇Ht,v〉 = dHt(v).

This can also be written using the contraction operator on differential forms:

iXHΩ = dHt

Exercise 59.2 Show that, if φ : U → V is a change of coordinate charts in a manifold M ,
then ∂L

∂q̇
changes according to φ∗ : V → U . Hence ∂L

∂q̇
is a covector.

Exercise 59.3 (a) Compute the Legendre transformed of L(q, q̇, t) = 1
2
〈Aq̇, q̇〉 − V (q).

(b) Show that, in general, if H is the Legendre transformed of L, then

Lq̇q̇Hpp = Id.
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B. Hamiltonian Systems on Symplectic Manifolds

Motivated by the last expression that we found for the Hamiltonian vector field in IR2n, we

extend the definition to symplectic manifolds:

Definition 59.4 Let (N,Ω) be a symplectic manifold and H(z, t) = Ht(z) be a Ck real

valued function on N × IR. The Hamiltonian vector field associated with H is the (time

dependent) vector field XH defined by:

Ω(XH ,v) = dHt(v), ∀v ∈ TM.

Equivalently:

iXHΩ = dHt

The (possibly time dependent) O.D.E.:

(59.6) ż = XH(z, t)

is called Hamilton’s equations.

In local Darboux coordinate charts (eg. in conjugate coordinates chart of a cotangent

bundles), these equations take the form of (59.5) (see Exercise 59.5). If H is time indepen-

dent, then (59.6) generates a (local) flow onN . IfH is time dependent, thenXH generates a

(local) flow in the spaceN×IR, called the extended phase space in mechanics. Specifically,

one solves the following time independent system on N × IR:

ż = XH(z, s)

ṡ = 1

which generates a flow φt in N × IR satisfying:

φt(z, s) = (ht+ss (z), s + t),

where hts is a family of Ck−1 diffeomorphisms of N , Ck−1 smooth in s and t. This is

a general procedure for time dependent vector field. The diffeomorphism hts is called a

Hamiltonian map and, for each fixed s the curve t → hts is a Hamiltonian isotopy (an

isotopy is a smoothly varying 1–parameter family of diffeomorphisms). Another way of
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describing hts(z) is by saying that it is the unique solution z(t) of Hamilton’s equation with

initial condition z(s) = z. In practice, one often fixes s = 0 and denotes ht0 by ht. The

following exercise shows the one to one correspondence between time dependent vector

fields and isotopies. It also shows that, even though the time 0 of a solution flow to a time

dependent vector field is the Identity, the maps ht do not in general form a 1-parameter

group.

Exercise 59.5 Show that the equation (59.6) takes the form of (59.5) in local coordinates.

Exercise 59.6 Let Xt be a vector field (not necessarily Hamiltonian) on a manifold N . Let
hts be the solution flow to the O.D.E. ż = Xt(z), ṡ = 1. Prove that:
(i) hss = Id, ∀s ∈ IR,

(ii)ht
′
s = ht

′
t ◦ hts, so that in particular hts = ht ◦ (hs)−1. Compute (hts)

−1 and deduce that,
in general, (ht0)

−1 may not be equal to (hr0) for any r: the maps ht do not form a group.
(iii) Conversely, given any (sufficiently smooth) isotopy gt in N , with g0 = Id, show that
the time dependent vector field:

ġt(z) =
d

du

∣∣∣∣
u=0

gt+u ◦ (gt)−1(z) =
dgt

dt

(
(gt)−1(z)

)
has solution hts = gt ◦ (gs)−1.

C. Invariants of the Hamiltonian Flow

Conservation of Energy. If G is a function on a differentiable manifold N , and X is a

vector field, we recall that the Lie derivative of G along X is:

LXG(z) =
d

dt

∣∣∣∣
t=0

G(φt(z)) = dG(X(z))

where φt is the flow solution for X .

Theorem 59.7 Let H be a time independent Hamiltonian function on (M,Ω) . Then

H is constant under the Hamiltonian flow it generates:

LXHH = 0.

Proof . LXHH = dH(XH) = Ω(XH , XH) = 0 ��
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Remark 59.8 LXHG = Ω(XG, XH) = −LXGH is also denoted by {G,H} and it is called

the Poisson bracket of H and G. Hence, the poisson bracket measures how far the function

G (resp. H) is from being constant along the flow of XH (resp.XG). When {H,G} = 0,

one says that G (resp. H) is a first integral of the Hamiltonian flow of H (resp. G), or that

the functions H and G are in involution. One can show (see eg. Arnold (1978), Abraham

& Marsden (1985)) that the set of Hamiltonian vector fields form a Lie sub–algebra of the

Lie algebra of vector fields on a manifold, in the sense that:

X{H,G} = [XH , XG].

In particular, the poisson bracket of two functions measures how far from commuting their

Hamiltonian flows are.

Hamiltonian Flows are Exact Symplectic. We extend the notion of Lie derivative to dif-

ferential forms. If X is any (possibly time dependent) vector field, and α a differential form,

we define the Lie derivative of α in the direction of X by:

LXα =
d

dt

∣∣∣∣
t=0

(gt)∗α.

where gt is the flow generated by X . At time t �= 0,

(59.7)
d

dt
(gt)∗α = (gt)∗LXα.

The isotopy gt preserves the form α whenever the Lie derivative is zero:

(gt)∗α = α, ∀t⇐⇒ LXα = 0.

We have the important homotopy formula (see eg. Weinstein (1979) or McDuff & Salamon

(1996)):

(59.8) LXα = iXdα + d(iXα)

and, at time t �= 0,
d

dt
(gt)∗α = (gt)∗ (iXdα + d(iXα))

A symplectic isotopy gt on (M,Ω) is an isotopy such that gt is a symplectic map for all

t. By the homotopy formula (and the fact that a symplectic form is closed), this can be

reworded:
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(59.9) gt is a symplectic isotopy⇐⇒ LXΩ = 0⇐⇒ d(iXΩ) = 0

where X is the (time dependent) vector field dgt

dt

(
(gt)−1(z)

)
(see Exercise 59.6). The

following theorem characterizes Hamiltonian isotopies, at least in cotangent bundles (or in

any exact symplectic manifold, i.e. one whose symplectic form is exact)

Theorem 59.9 (a) On any symplectic manifold, Hamiltonian isotopies are symplec-

tic.

(b) On a cotangent bundle T ∗M , a Hamiltonian isotopy with Hamiltonian H(z, t)

is also exact symplectic:

ht
∗
λ− λ = ht

∗
pdq − pdq = dSt, with St =

∫
γ

pdq −Hdτ

where γ is the curve (hτ (z), τ), τ ∈ [0, t] solution of Hamilton’s equations in the

extended phase space T ∗M × IR, and z is the point at which the form is evaluated.

(c) Conversely, if an isotopy gt is exact symplectic then it is Hamiltonian, with the

Hamiltonian function given by:

Ht = iXtpdq − ((gt)−1)∗
d

dt
(St).

where Xt(z) = dgt

dt ((gt)−1(z)).

Proof . The first assertion (a) is an immediate consequence of (59.9) : ifht is a Hamiltonian

isotopy then i(ḣt)Ω = dHt is exact, and therefore closed. In cotangent bundles, it is also a

consequence of the second assertion. Now, look for d
dt (St) in (b):

(59.10)
d

dt
h∗tλ = h∗t (iXHdλ + d(iXHλ)) = h∗t d(−Ht + iXHλ) = dh∗t (−Ht + iXHλ)

From this we get:

(59.11) h∗tλ− λ = d

∫ t

0

h∗τ (−Hτ + iXHλ)dτ def= dSt

that is, ht is exact symplectic. We leave it to the reader to rewrite the integral as the one

advertised in the theorem. This finishes the proof of (b). To prove the converse (c), let gt be

an exact symplectic isotopy:

(gt)∗pdq − pdq = dSt
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for some St differentiable in all of (q,p, t). We claim that the (time dependent ) vector field

Xt(z) whose flow is gt, is Hamiltonian. To see this, we differentiate (59.11) :

d

dt
(dSt) =

d

dt
(gt)∗pdq = (gt)∗LXtpdq = (gt)∗ (iXtd(pdq) + d(iXtpdq)) ,

from which we get

iXtdq ∧ dp = d

(
iXtpdq − ((gt)−1)∗

d

dt
(St)

)
= dHt,

which exactly means that Xt is Hamiltonian with Ht as Hamiltonian function. ��

Integral Invariant of Poincaré-Cartan. A less formal proof of (b) in the above theorem

yields extra information. We follow Chapter 9 in Arnold (1978). We first prove that the

vector field (XH , 1) in T ∗M × IR generates the kernel of the form d(pdq − Hdt) =

dp ∧ dq −Hqdq ∧ dt−Hpdp ∧ dt. The matrix of this form in the (Darboux) coordinate

(q,p, t) is:

A =


 0 −Id Hq

Id 0 Hp

−Hq −Hp 0


 ,

where Hq, Hp are column vectors on the right and row vectors on the bottom of the matrix.

Since the upper left 2n× 2n matrix is the nonsingular matrix J , A is of rank (at least) 2n.

It is easy to see that the Hamiltonian vector field (Hp,−Hq, 1) = (XH , 1) generates its

kernel. Now, take a closed curve γ in T ∗M × IR. The image under the Hamiltonian flow

of γ forms an embedded tube in T ∗M × IR. Since the tangent space to this tube at any of

its point z contains the vector (XH(z), 1), the form d(pdq−Hdt) restricted to this tube is

null. As a result, because of Stokes’ theorem, if γ1 and γ2 in T ∗M × IR encircle the same

tube of orbits of the extended flow, we must have:

(59.12)
∫
γ1

pdq −Hdt =
∫
γ2

pdq −Hdt

since γ1 − γ2 is the boundary of a region of the tube. The form pdq −Hdt is called the

integral invariant of Poincaré–Cartan. As a particular case, if γ1 is of the form (γ, t1) and

γ2 = (ht2t1γ, t2), the form Hdt is null on these curves and hence Equation (59.12) reads:

(59.13)
∫
γ1

pdq =
∫
h
t2
t1
γ

pdq
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This last equation implies the statement (b) in Theorem 59.9: it proves that the function

(59.14) St =
∫ z

z0

ht
∗
pdq − pdq

is well defined, i.e. the integral does not depend on the path chosen between z0 and z. This

proves in turn that ht is exact symplectic. ��

Conservation of Hamilton’s Vector Field Under Symplectic Maps. The property that

Hamilton’s equations are preserved under symplectic maps characterizes these maps, which

are for this reason called canonical transformations in some of the classical literature. Even

though we do not need this theorem in this book, we include it here since it explains why

symplectic geometry came to exist.

Theorem 59.10 Let F : (M,ωM ) → (N,ωN ) be a diffeomorphism. Then F is

symplectic if and only if for all function H : N → IR,

(59.15) F∗XH◦F = XH .

In this case, F conjugates the Hamiltonian flows ht of H and gt of H ◦ F :

gt = F−1 ◦ ht ◦ F.

This holds also when H is time dependent.

Proof . Reminding the reader that by definition F∗X(F (z)) = DFzX(z) for any vector

field X , we also use the notation F ∗Y to mean (F−1)∗Y . It is not hard to check that the

following formula holds:

(59.16) F ∗iXα = iF∗XF ∗α

for any vector field X and differential form α. Coming back to our statement, we have on

one hand:

F ∗iXHωN = F ∗dH = dH ◦ F,

and on the other hand,

F ∗iXHωN = iF∗XHF
∗ωN = iF∗XHωM
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because of (59.16) and the fact that F is symplectic. This proves (59.15) . Conversely, if

(59.15) holds for any H , the same kind of computation shows that,

iXH◦FF
∗ωN = iXH◦F ωM

and since any tangent vector at a point of M is of the form XH◦F for some H , we must have

F ∗ωN = ωM , i.e. F is symplectic. The conjugacy statement, a general fact about O.D.E.’s,

is left to the reader, as well as checking that everything still works with time dependent

systems. ��

Exercise 59.11 The Lie derivative of a function can be defined, in the obvious way, along
any differentiable isotopy. What fails in Theorem 59.7 when H is time dependent?

Exercise 59.12 Show that in Darboux coordinates:

{H,G} =
∂H

∂q

∂G

∂p
− ∂H
∂p

∂G

∂q
.

Exercise 59.13 Prove that the function St defined in (59.14) satisfies:

St(z) =

∫
γ

pdq −Hdt + C(z0, t),

for some C, and γ as in Theorem 59.12. (Hint. Apply Stokes on the appropriate surface.)

Exercise 59.14 Prove that hts is exact symplectic (i.e. even for s �= 0), where hts(z) is, as
in subsection B, the solution of Hamilton’s equation such that z(s) = z.

Exercise 59.15 Let H be autonomous, or of period τ . Show that XH(z) is preserved by
Dhτ (z), i.e. XH is an eigenvector of Dhτ with eigenvalue 1.


