Fixed-Point & Floating-Point Number Formats

CSC231

Dominique Thiébaut
dthiebaut@smith.edu
Reference

http://cs.smith.edu/dftwiki/index.php/
CSC231_An_Introduction_to_Fixed-_and_Floating-
Point_Numbers
public static void main(String[] args) {

 int n = 10;
 int k = -20;

 float x = 1.50;
 double y = 6.02e23;
}

public static void main(String[] args) {
 int n = 10;
 int k = -20;
 float x = 1.50;
 double y = 6.02e23;
}

public static void main(String[] args) {
 int n = 10;
 int k = -20;
 float x = 1.50;
 double y = 6.02e23;
}

Nasm knows what 1.5 is!
in memory, \(x \) is represented by

\[
00111111 \ 11000000 \ 00000000 \ 00000000
\]

or \(0x3FC00000 \)
• Fixed-Point Format

• Floating-Point Format
Fixed-Point Format

- Used in very few applications, but programmers know about it.

- Some micro controllers (e.g. Arduino Uno) do not have Floating Point Units (FPU), and must rely on libraries to perform Floating Point operations (VERY SLOW)

- Can be used when storage is at a premium (can use small number of bits to represent a real number)
Review Decimal System

\[123.45 = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2} \]
Can we do the same in binary?

• Let's do it with **unsigned numbers** first:

\[1101.11 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}\]
Can we do the same in binary?

• Let's do it with **unsigned numbers** first:

\[
1101.11 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2}
\]

\[
= 8 + 4 + 1 + 0.5 + 0.25
\]

\[
= 13.75
\]
• If we know where the binary point is, we do not need to "store" it anywhere. (Remember we used a bit to represent the +/- sign in 2’s complement.)

• A format where the binary/decimal point is fixed between 2 groups of bits is called a **fixed-point format**.
Definition

• A number format where the numbers are unsigned and where we have \(a \) integer bits (on the left of the decimal point) and \(b \) fractional bits (on the right of the decimal point) is referred to as a \(U(a,b) \) fixed-point format.

• Value of an \(N \)-bit binary number in U(a,b):

\[
x = (1/2^b) \sum_{n=0}^{N-1} 2^n x_n
\]
Exercise 1

\[x = 1011\ 1111 = 0xBF \]

- What is the value represented by \(x \) in \(U(4,4) \)?
- What is the value represented by \(x \) in \(U(7,3) \)?
We stopped here last time...
Exercise 2

- \(z = 00000001 \ 00000000 \)
- \(y = 00000010 \ 00000000 \)
- \(v = 00000010 \ 10000000 \)

- What values do \(z \), \(y \), and \(v \) represent in a \(U(8,8) \) format?
Exercise 3

• What is 12.25 in $U(4,4)$? In $U(8,8)$?
What about **Signed** Numbers?
Observation #1

• In an N-bit, unsigned integer format, the weight of the MSB is 2^{N-1}
nybble vs. Unsigned

<table>
<thead>
<tr>
<th>nybble</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>+0</td>
</tr>
<tr>
<td>0001</td>
<td>+1</td>
</tr>
<tr>
<td>0010</td>
<td>+2</td>
</tr>
<tr>
<td>0011</td>
<td>+3</td>
</tr>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>0101</td>
<td>+5</td>
</tr>
<tr>
<td>0110</td>
<td>+6</td>
</tr>
<tr>
<td>0111</td>
<td>+7</td>
</tr>
<tr>
<td>1000</td>
<td>+8</td>
</tr>
<tr>
<td>1001</td>
<td>+9</td>
</tr>
<tr>
<td>1010</td>
<td>+10</td>
</tr>
<tr>
<td>1011</td>
<td>+11</td>
</tr>
<tr>
<td>1100</td>
<td>+12</td>
</tr>
<tr>
<td>1101</td>
<td>+13</td>
</tr>
<tr>
<td>1110</td>
<td>+14</td>
</tr>
<tr>
<td>1111</td>
<td>+15</td>
</tr>
</tbody>
</table>

N = 4

\[2^{N-1} = 2^3 = 8\]
Observation #2

• In an N-bit signed, 2's complement, integer format, the weight of the MSB is -2^{N-1}
2's Complement

<table>
<thead>
<tr>
<th>nybble</th>
<th>2's complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>+0</td>
</tr>
<tr>
<td>0001</td>
<td>+1</td>
</tr>
<tr>
<td>0010</td>
<td>+2</td>
</tr>
<tr>
<td>0011</td>
<td>+3</td>
</tr>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>0101</td>
<td>+5</td>
</tr>
<tr>
<td>0110</td>
<td>+6</td>
</tr>
<tr>
<td>0111</td>
<td>+7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
</tr>
</tbody>
</table>

N=4

\[-2^{N-1} = -2^3 = -8\]
Fixed-Point Signed Format

• **Fixed-Point signed** format = sign bit + \(a \) integer bits + \(b \) fractional bits = \(N \) bits = \(A(a, b) \)

• \(N = \) number of bits = \(1 + a + b \)

• Format of an \(N \)-bit \(A(a, b) \) number:

\[
x = (1/2^b) \left[-2^{N-1}x_{N-1} + \sum_{0}^{N-2} 2^n x_n \right],
\]
Examples in A(7,8)

- 000000001 00000000 = 00000001 . 00000000 = 1d
- 100000001 00000000 = 10000001 . 00000000 = -128 + 1 = -127d
- 00000010 00000000 = 0000010 . 00000000 = 2d
- 10000010 00000000 = 1000010 . 00000000 = -128 + 2 = -126d
- 00000010 10000000 = 0000010 . 10000000 = 2.5d
- 10000010 10000000 = 1000010 . 10000000 = -128 + 2.5 = -125.5d
Exercises

• What is -1 in A(7,8)?
• What is -1 in A(3,4)?
• What is 0 in A(7,8)?
• What is the smallest number one can represent in A(7,8)?
• The largest in A(7,8)?
Exercises

• What is the largest number representable in $U(a, b)$?

• What is the smallest number representable in $U(a, b)$?

• What is the largest positive number representable in $A(a, b)$?

• What is the smallest negative number representable in $A(a, b)$?
• **Fixed-Point Format**

 • **Definitions**
 • Range
 • Precision
 • Accuracy

• **Floating-Point Format**
Range

• Range = difference between most positive and most negative numbers.

• **Unsigned Range:**
 The range of $U(a, b)$ is $0 \leq x \leq 2^a - 2^{-b}$.

• **Signed Range:**
 The range of $A(a, b)$ is $-2^a \leq x \leq 2^a - 2^{-b}$.
Precision

• **Precision** = \(b \), the number of fractional bits

 https://en.wikibooks.org/wiki/Floating_Point/Fixed-Point_Numbers

• **Precision** = \(N \), the total number of bits

Resolution

- The **resolution** is the smallest non-zero magnitude representable.

- The **resolution** is the size of the intervals between numbers represented by the format.

- Example: A(13, 2) has a resolution of 0.25.
\[A(13, 2) \rightarrow \text{sbbbb bbbbb bbbbb bb . bb} \]

\[
\begin{align*}
2^{-2} &= 0.25 \\
2^{-1} &= 0.5
\end{align*}
\]
$A(13, 2) \rightarrow \text{sbbbbb bbbbb bbbbb bb . bb}$

$2^{-2} = 0.25$

$2^{-1} = 0.5$

Resolution
Accuracy

• The **accuracy** is the largest magnitude of the difference between a number and its representation.

• **Accuracy** = $\frac{1}{2}$ Resolution
Real quantity we want to represent

$A(13, 2) \rightarrow \text{ sbb bbbb bbbb bb b.b b}$

$2^{-2} = 0.25$

$2^{-1} = 0.5$
A(13, 2) \rightarrow sbbb bbbb bbbb bb . bb

$2^{-2} = 0.25$

$2^{-1} = 0.5$

Real quantity we want to represent
A(13, 2) → sbbbbb bbbbbb bb . bb

2^{-2} = 0.25

2^{-1} = 0.5
$A(13, 2) \rightarrow \text{sbbb bbbb bbbb bb . bb}$

$Largest\ Error = \textbf{Accuracy}$
Questions in search of answers…

- What is the accuracy of an U(7,8) number format?

- How good is U(7,8) at representing small numbers versus representing larger numbers? In other words, is the format treating small numbers better than large numbers, or the opposite?
Questions in search of answers…

• What is the accuracy of an U(7,8) number format?

• How good is U(7,8) at representing small numbers versus representing larger numbers? In other words, is the format treating small numbers better than large numbers, or the opposite?

Another way of thinking about this: Think of bits as colors, and the number as an amount of money paid for a portrait. The amount of money defines the number of colors used to paint.
• Fixed-Point Format

• Floating-Point Format
IEEE
Floating-Point
Number Format
A bit of history…
• 1960s, 1970s: many different ways for computers to **represent** and **process** real numbers. Large variation in way real numbers were operated on.

• 1976: **Intel** starts design of first hardware floating-point **co-processor** for 8086. Wants to define a **standard**

• 1977: Second meeting under umbrella of **Institute for Electrical and Electronics Engineers** (IEEE). Mostly microprocessor makers (IBM is observer)

• Intel first to put whole **math library** in a processor
Intel Coprocessors

<table>
<thead>
<tr>
<th>Processor</th>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8087</td>
<td>1980</td>
<td>Numeric coprocessor for 8086 and 8088 processors.</td>
</tr>
<tr>
<td>80C187</td>
<td>1987</td>
<td>Math co-processor for 80C186 embedded processors.</td>
</tr>
<tr>
<td>80287</td>
<td>1987</td>
<td>Math co-processor for 80286 processors.</td>
</tr>
<tr>
<td>80387</td>
<td>1991</td>
<td>Math co-processor for SX versions of 80486 processors.</td>
</tr>
<tr>
<td>Xeon Phi</td>
<td>2012</td>
<td>Multi-core co-processor for Xeon CPUs.</td>
</tr>
</tbody>
</table>
Some Processors that do not contain FPUs

- Some ARM processors
- Arduino Uno
- Others
How Much Slower is Library vs FPU operations?

Library-emulated FP operations = 10 to 100 times slower than hardware FP operations executed by FPU
Floating Point Numbers Are Weird...
“0.1 decimal does not exist”

— D.T.
6.02 \times 10^{23} \quad -0.0000001 \\
1.23456789 \times 10^{-19} \\
-1.0
1.230

= 12.30 \times 10^{-1}

= 123.0 \times 10^{-2}

= 0.123 \times 10^{1}
IEEE Format

• 32 bits, single precision (floats in Java)
• 64 bits, double precision (doubles in Java)
• 80 bits*, extended precision (C, C++)

\[x = +/- 1.bbbbbbb...bbb \times 2^{bbb...bb} \]

*80 bits in assembly = 1 Tenbyte
Observations

\[x = +/- 1.\text{bbbbbb}...\text{bbb} \times 2^{\text{bbb}...\text{bb}} \]

- +/- is the sign. It is represented by a bit, equal to 0 if the number is positive, 1 if negative.
- the part \(1.\text{bbbbbb}...\text{bbb}\) is called the **mantissa**
- the part \(\text{bbb}...\text{bb}\) is called the **exponent**
- 2 is the **base** for the exponent (could be different!)
- the number is **normalized** so that its binary point is moved to the right of the leading 1.
- because the leading bit will always be 1, we don't need to store it. This bit will be an **implied bit**.
IEEE 754 Converter

This page allows you to convert between the decimal representation of numbers (like “1.02”) and the binary format used by all modern CPUs (IEEE 754 floating point). The conversion is limited to single precision numbers (32 Bit). The purpose of this webpage is to help you understand floating point numbers.

IEEE 754 Converter (JavaScript), V0.12
Note: This JavaScript-based version is still under development, please report errors here.

<table>
<thead>
<tr>
<th>Value:</th>
<th>Exponent</th>
<th>Mantissa</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>2^{-4}</td>
<td>1.600000023841858</td>
</tr>
<tr>
<td>Encoded as:</td>
<td>0 123</td>
<td>5033165</td>
</tr>
</tbody>
</table>

Binary: [Binary representation]

- Decimal Representation: 0.1
- Binary Representation: 00111101110011001100110011001101
- Hexadecimal Representation: 0x3dcccccd
- After casting to double precision: 0.10000000149011612

http://www.h-schmidt.net/FloatConverter/IEEE754.html
We stopped here last time...
for (double d = 0; d != 0.3; d += 0.1)
 System.out.println(d);
Normalization (in decimal)

(normal = standard format)

\[y = 123.456 \]

\[y = 1.23456 \times 10^2 \]
Normalization
(in binary)

\[y = 1000.100111 \ (8.609375d) \]

\[y = 1.000100111 \times 2^3 \]
Normalization (in binary)

\[y = 1000.100111 \]

\[y = 1.000100111 \times 2^3 \]
Normalization (in binary)

\[y = 1000.100111 \]

\[y = 1.000100111 \times 2^3 \]

\[y = 1.000100111 \times 10^{11} \]
But, remember, all* numbers have a leading 1, so, we can pack the bits even more efficiently!

*really?
implied bit!

$$+1.000100111 \times 10^{11}$$

- **Sign**: 0
- **Mantissa**: 0001001110
- **Exponent**: 11
IEEE Format

24 bits stored in 23 bits!
\[y = 1000.100111 \]
why not 00000011 ?
How is the exponent coded?
<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
</tbody>
</table>

bias of 127
<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
</tbody>
</table>
\[y = 1.000100111 \times 10^{11} \]

Ah! 3 represented by
130 = 128 + 2

\[1.0761719 \times 2^3 = 8.6093752 \]
Verification
8.6093752 in IEEE FP?

http://www.h-schmidt.net/FloatConverter/IEEE754.html
Exercises

• How is 1.0 coded as a 32-bit floating point number?
• What about 0.5?
• 1.5?
• -1.5?

• what floating-point value is stored in the 32-bit number below?

```
1 | 1000 0011 | 111 1000 0000 0000 0000 0000
```
what about 0.1?
0.1 decimal, in 32-bit precision, IEEE Format:

0 01111011 10011001100110011001101
0.1 decimal, in 32-bit precision, IEEE Format:

0 01111011 10011001100110011001101

Value in double-precision: 0.100000000149011612
NEVER
NEVER
NEVER
COMPARE FLOATS OR DOUBLES FOR EQUALITY!
N-E-V-E-R!
for (double d = 0; d != 0.3; d += 0.1)
System.out.println(d);
Special Cases

<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td></td>
</tr>
</tbody>
</table>
Zero

• Why is it special?

• 0.0 = 0 00000000 00000000000000000000000000000000
if mantissa is 0:
number = 0.0

<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>127</td>
<td></td>
</tr>
<tr>
<td></td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
</tbody>
</table>
Very Small Numbers

• Smallest numbers have stored exponent of 0.

• In this case, the implied 1 is omitted, and the exponent is -126 (not -127!)
<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>.</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
</tbody>
</table>

- **if mantissa is 0:** number = 0.0
- **if mantissa is !0:** no hidden 1
Very Small Numbers

- Example: 0 00000000 001000000000000000000000 + (2^{-126}) \times (0.001)
 + (2^{-126}) \times (0.125) = 1.469e-39
<table>
<thead>
<tr>
<th>real exponent</th>
<th>stored exponent</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>-126</td>
<td>0</td>
<td>Special Case #1</td>
</tr>
<tr>
<td>-126</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>-125</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>-124</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>-123</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>255</td>
<td>Special Case #2</td>
</tr>
</tbody>
</table>

Special Cases

?
Very large numbers

- stored exponent = 1111 1111
- if the mantissa is = 0 ➝ +/- ∞
Very large numbers

• stored exponent = 1111 1111

• if the mantissa is $= 0$ \rightarrow $+/\infty$
Very large numbers

- stored exponent = 1111 1111
- if the mantissa is = 0 ➞ +/- ∞
- if the mantissa is != 0 ➞ NaN
Very large numbers

• stored exponent = 1111 1111

• if the mantissa is = 0 ➔ +/- ∞

• if the mantissa is != 0 ➔ NaN = Not-a-Number
Very large numbers

- stored exponent = 1111 1111
- if the mantissa is = 0 ==> +/- \infty
- if the mantissa is != 0 ==> NaN
NaN is *sticky*!
• 0 11111111 00000000000000000000000000 = + \infty

• 1 11111111 00000000000000000000000000 = - \infty

• 0 11111111 100000100000000000000000000 = NaN
Operations that create NaNs (http://en.wikipedia.org/wiki/NaN):

- The **divisions** $0/0$ and $\pm\infty/\pm\infty$
- The **multiplications** $0\times\pm\infty$ and $\pm\infty\times0$
- The **additions** $\infty + (-\infty)$, $(-\infty) + \infty$ and equivalent subtractions
- The **square root** of a negative number.
- The **logarithm** of a negative number
- The **inverse sine or cosine** of a number that is less than -1 or greater than $+1$
Generating NaNs

```java
import java.util.*;
import static java.lang.Double.NaN;
import static java.lang.Double.POSITIVE_INFINITY;
import static java.lang.Double.NEGATIVE_INFINITY;

public class GenerateNaN {
    public static void main(String args[]) {
        double[] allNaNs = { 0D / 0D,
            POSITIVE_INFINITY / POSITIVE_INFINITY,
            POSITIVE_INFINITY / NEGATIVE_INFINITY,
            NEGATIVE_INFINITY / POSITIVE_INFINITY,
            NEGATIVE_INFINITY / NEGATIVE_INFINITY,
            0 * POSITIVE_INFINITY,
            0 * NEGATIVE_INFINITY,
            Math.pow(1, POSITIVE_INFINITY),
            POSITIVE_INFINITY + NEGATIVE_INFINITY,
            NEGATIVE_INFINITY + POSITIVE_INFINITY,
            POSITIVE_INFINITY - POSITIVE_INFINITY,
            NEGATIVE_INFINITY - NEGATIVE_INFINITY,
            Math.sqrt(-1),
            Math.log(-1),
            Math.asin(-2),
            Math.acos(+2),
        };
        System.out.println(Arrays.toString(allNaNs));
        System.out.println(NaN == NaN);
        System.out.println(Double.isNaN(NaN));
    }
}
```

[NaN, NaN, NaN] false true
Range of Floating-Point Numbers

<table>
<thead>
<tr>
<th></th>
<th>Denormalized</th>
<th>Normalized</th>
<th>Approximate Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Precision</td>
<td>± 2(^{-149}) to (1-2(^{-23}))×2(^{-126})</td>
<td>± 2(^{-126}) to (2-2(^{-23}))×2(^{127})</td>
<td>± ~10(^{-44.85}) to ~10(^{38.53})</td>
</tr>
<tr>
<td>Double Precision</td>
<td>± 2(^{-1074}) to (1-2(^{-52}))×2(^{-1022})</td>
<td>± 2(^{-1022}) to (2-2(^{-52}))×2(^{1023})</td>
<td>± ~10(^{-323.3}) to ~10(^{308.3})</td>
</tr>
</tbody>
</table>
Range of Floating-Point Numbers

Remember that!

<table>
<thead>
<tr>
<th>Precision</th>
<th>Denormalized</th>
<th>Normalized</th>
<th>Approximate Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Precision</td>
<td>$\pm 2^{-149}$ to $(1-2^{-23}) \times 2^{-126}$</td>
<td>$\pm 2^{-126}$ to $(2-2^{-23}) \times 2^{127}$</td>
<td>$\pm \sim 10^{-44.85}$ to $\sim 10^{38.53}$</td>
</tr>
<tr>
<td>Double Precision</td>
<td>$\pm 2^{-1074}$ to $(1-2^{-52}) \times 2^{-1022}$</td>
<td>$\pm 2^{-1022}$ to $(2-2^{-52}) \times 2^{1023}$</td>
<td>$\pm \sim 10^{-323.3}$ to $\sim 10^{308.3}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precision</th>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Precision</td>
<td>$\pm (2-2^{-23}) \times 2^{127}$</td>
<td>$\sim \pm 10^{38.53}$</td>
</tr>
<tr>
<td>Double Precision</td>
<td>$\pm (2-2^{-52}) \times 2^{1023}$</td>
<td>$\sim \pm 10^{308.25}$</td>
</tr>
</tbody>
</table>
Resolution of a Floating-Point Format

Check out table here: http://tinyurl.com/FPResol
Resolution
Another way to look at it

http://jasss.soc.surrey.ac.uk/9/4/4.html
• Rosetta Landing on Comet

• 10-year trajectory
Why not using 2’s Complement for the Exponent?

0.000000005 = 0 01100110 10101101011111111100010101
1 = 0 01111111 00000000000000000000000000000000
65536.5 = 0 10001111 00000000000000000000000000000000
65536.25 = 0 10001111 00000000000000000000000000000000
http://www.h-schmidt.net/FloatConverter/IEEE754.html

Exercises

- Does this converter support NaN, and ∞?
- Are there several different representations of $+\infty$?
- What is the largest float representable with the 32-bit format?
- What is the smallest normalized float (i.e. a float which has an implied leading 1. bit)?
How do we **add** 2 FP numbers?
• \(fp1 = s1 \text{ m1 e1} \)
 \(fp2 = s2 \text{ m2 e2} \)
 \(fp1 + fp2 = ?\)

• **denormalize** both numbers (restore hidden 1)

• assume \(fp1\) has largest exponent \(e1\): make \(e2\) **equal** to \(e1\) and **shift decimal point** in \(m2 \rightarrow m2'\)

• compute **sum** \(m1 + m2'\)

• **truncate** & **round** result

• **renormalize** result (after checking for special cases)
\[1.111 \times 2^5 + 1.110 \times 2^8 \]

1.111 \times 2^5 + 1.110 \times 2^8

\[
\begin{align*}
1.110000000 \times 2^8 \\
+ 0.00111100 \times 2^8 \\
\hline
1.111111100 \times 2^8
\end{align*}
\]

1.111111100 \times 2^8

\[
\begin{align*}
\text{locate largest number} \\
\text{shift mantissa of smaller} \\
\text{compute sum} \\
\text{round & truncate} \\
\text{normalize}
\end{align*}
\]

= 10.000 \times 2^8

= 1.000 \times 2^9
How do we multiply 2 FP numbers?
• fp1 = s1 m1 e1
 fp2 = s2 m2 e2
 fp1 × fp2 = ?

• Test for multiplication by special numbers (0, NaN, ∞)

• **denormalize** both numbers (restore hidden 1)

• compute product of m1 × m2

• compute **sum** e1 + e2

• **truncate** & **round** m1 × m2

• **adjust** e1+e2 and **normalize**.
How do we compare two FP numbers?
As unsigned integers!
No unpacking necessary!
Programming FP Operations in Assembly...
Pentium

- EAX
- EBX
- ECX
- EDX

ALU
Pentium

Cannot do FP computation
FLOATING POINT UNIT

SP0
SP1
SP2
SP3
SP4
SP5
SP6
SP7
Operation: \(\frac{7+10}{9} \)
Operation: \((7+10)/9\)

fpush 7
Operation: \((7+10)/9\)

```
fpush 7
fpush 10
```
Operation: \((7+10)/9\)

- `fpush 7`
- `fpush 10`
- `fadd`
Operation: \((7+10)/9\)

- fpush 7
- fpush 10
- fadd
Operation: \((7+10)/9\)

- `fpush 7`
- `fpush 10`
- `fadd`
- `fpush 9`
Operation: \((7+10)/9\)

- \(\text{fpush } 7\)
- \(\text{fpush } 10\)
- \(\text{fadd}\)
- \(\text{fpush } 9\)
- \(\text{fdiv}\)

Values:
- SP0
- SP1
- SP2
- SP3
- SP4
- SP5
- SP6
- SP7

Floating Point Unit
Operation: \((7+10)/9\)
```
fpush 7
fpush 10
fadd
fpush 9
fdiv
```
The Pentium computes FP expressions using RPN!
The Pentium computes FP expressions using RPN!

Reverse Polish Notation
Nasm Example: \(z = x + y \)

```nasm
SECTION .data
x dd 1.5
y dd 2.5
z dd 0

; compute \( z = x + y \)
SECTION .text
 fld dword [x]
 fld dword [y]
 fadd
 fstp dword [z]
```
Printing floats in C

```c
#include "stdio.h"

int main() {
    float z = 1.2345e10;
    printf( "z = %e\n\n", z );
    return 0;
}
```
Printing floats in C

```c
#include "stdio.h"

int main() {
    float z = 1.2345e10;
    printf( "z = %e\n\n", z );
    return 0;
}
```

gcc -m32 -o printFloat printFloat.c
.
./printFloat
z = 1.234500e+10

works only on Linux with 32-bit Libraries
Printing floats in Assembly?

```
asm program
  call printf

C stdio.h library (printf)

object file
  nasm

executable
  gcc
```
extern printf ; the C function to be called

SECTION .data ; Data section

msg db "sum = %e",0x0a,0x00
x dd 1.5
y dd 2.5
z dd 0
temp dq 0

global main ; "C" main program
main:
 fld dword [x] ; need to convert 32-bit to 64-bit
 fld dword [y]
 fadd
 fstp dword [z] ; store sum in z
 fld dword [z] ; transform z to 64-bit by pushing in stack
 fstp qword [temp] ; and popping it back as 64-bit quadword
 push dword [temp+4] ; push temp as 2 32-bit words
 push dword [temp]
 push dword msg ; address of format string
 call printf ; Call C function
 add esp, 12 ; pop stack 3*4 bytes
 mov eax, 1 ; exit code, 0=normal
 mov ebx, 0
 int 0x80 ;
dthiebaut@hadoop:~/temp$ nasm -f elf addFloats.asm
```
dthiebaut@hadoop:~/temp$ gcc -m32 -o addFloats addFloats.o
```
```
dthiebaut@hadoop:~/temp$ ./addFloats
```
```
sum = 4.000000e+00
```
```
dthiebaut@hadoop:~/temp$
```
More code examples here:

http://cs.smith.edu/dftwiki/index.php/CSC231_An_Introduction_to_Fixed-__and_Floating-Point_Numbers#Assembly_Language_Programs