Introduction
To Graphs

D. Thiebaut
CSC212 — Fall 2014
Formal Definition

- $G = (V, E)$
 - V is the set of *vertices*
 - E is the set of *edges*
Directed Graphs

• $G = (V, E)$

• Each element e of E is an ordered pair (v_i, v_j)
Undirected Graphs

- $G = (V, E)$
- For each edge (v_i, v_j) of E, there is an edge (v_j, v_i)
How Do We Store Graphs?

- Adjacency List
- Adjacency Matrix
- Linked Nodes
- Incidence Matrix
Adjacency List

(a)

(b)

(c)
Adjacency Matrix
Incidence Matrix

Why the different data-structure?
Terminology
Path

cycle

Disconnected

connected
e emanate from v_i

out-degree of v_i is 4

e is incident to V_k

in-degree of v_k is 3
Java Implementation
Java Review: Iterators
public static void main(String[] args) {
 ArrayList<Integer> array = new ArrayList<Integer>();
 for (int i=0; i<5; i++)
 array.add(i*2 + 1);

 Iterator<Integer> it = array.iterator();

 while (it.hasNext()) {
 int x = it.next();
 System.out.print(x + " ");
 }
}
public static void main(String[] args) {
 ArrayList<Integer> array = new ArrayList<Integer>();
 for (int i = 0; i < 5; i++)
 array.add(i * 2 + 1);

 for (int x : array) {
 System.out.println(x);
 }
}
Java Implementation (one option)
```java
public class Graph1 {
    private boolean[][] adjMat;
    private int noVertices;
    private int noEdges;
    private Set<Integer> vertices;
    private boolean[] visited;
    private int count;

    public Graph1(int V) {
        adjMat = new boolean[V][V]; // allocated to false by default
        noVertices = V;
        noEdges = 0;
        vertices = new TreeSet<Integer>();
    }

    public void addEdge(int v1, int v2) {
        vertices.add(v1);
        vertices.add(v2);
        if (!adjMat[v1][v2])
            noEdges++;
        adjMat[v1][v2] = true;
        adjMat[v2][v1] = true;
    }
}
```
public boolean contains(int v1, int v2) {
 return adjMat[v1][v2];
}

// return list of neighbors of v
public Iterable<Integer> adj(int v) {
 return new AdjMatIterator(v);
}
// support iteration over graph vertices
private class AdjMatIterator implements Iterator<Integer>, Iterable<Integer> {
 int v, w = 0;

 AdjMatIterator(int v) {
 this.v = v;
 }

 public Iterator<Integer> iterator() {
 return this;
 }

 public boolean hasNext() {
 while (w < noVertices) {
 if (adjMat[v][w]) return true;
 w++;
 }
 return false;
 }

 public Integer next() {
 if (hasNext()) return w++;
 return null;
 }
}
/**
 * (0) --- (1) --- (2)
 * | | \
 * | | \
 * (3) --- (4) (5) --- (6)
 * |
 * (7) --- (8)
 */

public static void main(String[] args) {
 Graph1 G = new Graph1(9);
 G.addEdge(0, 1); G.addEdge(1, 2); G.addEdge(3, 4);
 G.addEdge(5, 6); G.addEdge(7, 8); G.addEdge(0, 3);
 G.addEdge(1, 4); G.addEdge(1, 5); G.addEdge(3, 7);
 G.addEdge(4, 8);

 System.out.print("Vertices adjacent to 1: ");
 for (int v: G.adj(1))
 System.out.print(v + " ");
}

Vertices adjacent to 1: 0 2 4 5
DFS: Depth First Search
Example

1
5
2
4
3
6
0
Example
Example

0 1 2 3 4 5 6

0 1 2 3 4

1, 4, 6

5, 2, 4
Example

0 1 2 3 4 5 6

1, 2, 4

2, 4, 6

1, 2, 6, 3
Example
Example

0 1 2 3 4 5 6

1,4,6
5,2,4
1

\$\emptyset, \varnothing, 0\$

0,4

5,2,6,3
2,4,0

1,2,6,3

\$\emptyset, \emptyset\$

1,2,6,3

6

5

1

3

4
Example

1, 4, 6
5, 2, 4
1, 2, 6, 3
2, 4, 0
3, 6
0, 4
What can we use DFS for?

What property of the graph can we test with DFS?
Java Implementation
private void recurseDFS(int v) {
 visited[v] = true;

 for (int w : adj(v))
 if (!visited[w])
 recurseDFS(w);
}

public void DFS(int v) {
 visited = new boolean[noVertices];
 recurseDFS(v);
}
Complexity
Complexity

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must initialize data structure for each vertex</td>
<td>$O(\ldots)$</td>
</tr>
<tr>
<td>Must follow each edge emanating from each vertex</td>
<td>$O(\ldots)$</td>
</tr>
</tbody>
</table>
Lab: Play with DFS
We stopped here last time...
BFS
Breadth First Search
Observations

• Both DFS and BFS create **spanning trees** with the edges they visit.

• The trees are **rooted** at the first vertex they start with.

• DFS works best as a **recursive** function

• BFS works best with a **queue**
Weighted Graphs
Weighted Graphs: Definitions

- Each edge e has a weight

- The cost of a path through linked vertices is the **sum of the weights** of the edges on that path.
Finding the Shortest Path from a Vertex to the Other Vertices in its Component
Dijkstra’s Algorithm
The Basic Idea
DijkstraAlgorithm(G, start)
 for all vertices v in G
 cost(v) = \infty;

 cost(start) = 0;
 unvisited = all vertices in G
 while (unvisited not empty)
 v = unvisited vertex with lowest cost
 unvisited = unvisited - v
 for all unvisited w adjacent to v
 if cost(w) > cost(v) + weight(v, w)
 cost(w) = cost(v) + weight(v, w)
 predecessor(w) = v
Shortest Path from 5 to 3?

Shortest Path from 5 to all?
for all vertices v in G
 $\text{cost}(v) = \infty$;

$\text{cost}(\text{start}) = 0$;

$\text{unvisited} = \text{all vertices in } G$

while (unvisited not empty)
 $v = \text{unvisited vertex with lowest cost}$
 mark v as visited
 for all unvisited w adjacent to v
 if $\text{cost}(w) > \text{cost}(v) + \text{weight}(v,w)$
 $\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w)$
 $\text{predecessor}(w) = v$
for all vertices \(v \) in \(G \)
\[
\text{cost}(v) = \infty;
\]
\[
\text{cost}(\text{start}) = 0;
\]
\[
\text{unvisited} = \text{all vertices in } G
\]
while (unvisited not empty)
\[
\text{\textbf{v} = unvisited vertex with lowest cost}
\]
\[
\text{mark v as visited}
\]
for all unvisited \(w \) adjacent to \(v \)
\[
\text{if cost}(w) > \text{cost}(v) + \text{weight}(v,w)
\]
\[
\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w)
\]
\[
\text{predecessor}(w) = v
\]
for all vertices \(v \) in \(G \)
\[
cost(v) = \infty;
\]

\[
cost(\text{start}) = 0;
\]

unvisited = all vertices in \(G \)

while (unvisited not empty)
\[
v = \text{unvisited vertex with lowest cost}
\]
mark \(v \) as visited

for all unvisited \(w \) adjacent to \(v \)
if \(cost(w) > cost(v) + \text{weight}(v,w) \)
\[
cost(w) = cost(v) + \text{weight}(v,w)
\]
predecessor(\(w \)) = \(v \)
for all vertices v in G
$\text{cost}(v) = \infty$;

$\text{cost}(\text{start}) = 0$;
unvisited = all vertices in G
while (unvisited not empty)
 $v =$ unvisited vertex with lowest cost
 mark v as visited
 for all unvisited w adjacent to v
 if $\text{cost}(w) > \text{cost}(v) + \text{weight}(v,w)$
 $\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w)$
 predecessor(w) = v
for all vertices \(v \) in \(G \)
\[
\text{cost}(v) = \infty
\]
\[
\text{cost}(\text{start}) = 0;
\]
\(\text{unvisited} = \text{all vertices in } G \)
while (\text{unvisited} \text{ not empty })
\[
\text{v} = \text{unvisited vertex with lowest cost}
\]
mark \(v \) as visited
for all unvisited \(w \) adjacent to \(v \)
if \(\text{cost}(w) > \text{cost}(v) + \text{weight}(v, w) \)
\[
\text{cost}(w) = \text{cost}(v) + \text{weight}(v, w)
\]
\[
\text{predecessor}(w) = v
\]
for all vertices v in G
\[\text{cost}(v) = \infty; \]

cost(start) = 0;
unvisited = all vertices in G
while (unvisited not empty)
\[v = \text{unvisited vertex with lowest cost} \]
mark v as visited
for all unvisited w adjacent to v
if cost(w) > cost(v) + weight(v, w)
\[\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w) \]
\[\text{predecessor}(w) = v \]
for all vertices \(v \) in \(G \)
\[
\text{cost}(v) = \infty;
\]

\[
\text{cost}(\text{start}) = 0;
\]

\(\text{unvisited} = \text{all vertices in } G \)

while (unvisited not empty)

\(v = \text{unvisited vertex with lowest cost} \)

mark \(v \) as visited

for all unvisited \(w \) adjacent to \(v \)

if \(\text{cost}(w) > \text{cost}(v) + \text{weight}(v,w) \)

\[
\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w)
\]

\[
\text{predecessor}(w) = v
\]
for all vertices v in G
\[\text{cost}(v) = \infty; \]

\[\text{cost}(\text{start}) = 0; \]
unvisited = all vertices in G
while (unvisited not empty)
\[v = \text{unvisited vertex with lowest cost} \]
mark v as visited
for all unvisited w adjacent to v
if cost(w) > cost(v) + weight(v, w)
\[\text{cost}(w) = \text{cost}(v) + \text{weight}(v, w) \]
predecessor(w) = v
for all vertices \(v \) in \(G \)
\[
\text{cost}(v) = \infty;
\]

\[
\text{cost}(\text{start}) = 0;
\]

\(\text{unvisited} = \) all vertices in \(G \)

while (\text{unvisited} \text{ not empty})

\[
\text{v} = \text{unvisited vertex with lowest cost}
\]

mark \(v \) as visited

for all unvisited \(w \) adjacent to \(v \)

if \(\text{cost}(w) > \text{cost}(v) + \text{weight}(v,w) \)

\[
\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w)
\]

\[
\text{predecessor}(w) = v
\]
for all vertices \(v \) in \(G \)
\[
\text{cost}(v) = \infty;
\]

\[
\text{cost}(\text{start}) = 0;
\]

\(\text{unvisited} = \text{all vertices in } G \)

while (unvisited not empty)

\(v = \text{unvisited vertex with lowest cost} \)

mark \(v \) as visited

for all unvisited \(w \) adjacent to \(v \)

if \(\text{cost}(w) > \text{cost}(v) + \text{weight}(v,w) \)

\(\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w) \)

predecessor(\(w \)) = \(v \)
for all vertices \(v \) in \(G \)
\[
\text{cost}(v) = \infty;
\]
\[
\text{cost}(\text{start}) = 0;
\]
unvisited = all vertices in \(G \)
while (unvisited not empty)
 \(v \) = unvisited vertex with lowest cost
 mark \(v \) as visited
 for all unvisited \(w \) adjacent to \(v \)
 if cost(\(w \)) > cost(\(v \) + weight(\(v \),\(w \))
 cost(\(w \)) = cost(\(v \) + weight(\(v \),\(w \))
 predecessor(\(w \)) = \(v \)
for all vertices v in G
\[\text{cost}(v) = \infty; \]

\[\text{cost}(\text{start}) = 0; \]

\[\text{unvisited} = \text{all vertices in } G \]

\[\text{while } (\text{unvisited not empty}) \]

\[v = \text{unvisited vertex with lowest cost} \]

\[\text{mark } v \text{ as visited} \]

\[\text{for all unvisited } w \text{ adjacent to } v \]

\[\text{if } \text{cost}(w) > \text{cost}(v) + \text{weight}(v,w) \]

\[\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w) \]

\[\text{predecessor}(w) = v \]
for all vertices \(v \) in \(G \)
\[
\text{cost}(v) = \infty;
\]
\[
\text{cost}(\text{start}) = 0;
\]
\[
\text{unvisited} = \text{all vertices in } G
\]
while (\text{unvisited} \text{ not empty})
\[
\quad v = \text{unvisited vertex with lowest cost}
\]
mark \(v \) as visited
for all unvisited \(w \) adjacent to \(v \)
\[
\quad \text{if cost}(w) > \text{cost}(v) + \text{weight}(v,w)
\]
\[
\quad \text{cost}(w) = \text{cost}(v) + \text{weight}(v,w)
\]
\[
\quad \text{predecessor}(w) = v
\]
for all vertices v in G

$$\text{cost}(v) = \infty;$$

cost(start) = 0;

unvisited = all vertices in G

while (unvisited not empty)

$\vphantom{v}v = \text{unvisited vertex with lowest cost}$

mark v as visited

for all unvisited w adjacent to v

if cost(w) > cost(v) + weight(v, w)

$$\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w)$$

predecessor(w) = v
How do we implement the collection of all unvisited vertices?

How do we quickly find the vertex with the lowest cost?
Complexity of Dijkstra
DijkstraAlgorithm(G, start)
 for all vertices v in G
 cost(v) = ∞;
 cost(start) = 0;
 unvisited = all vertices in G
 while (unvisited not empty)
 v = unvisited vertex with lowest cost
 unvisited = unvisited - v
 for all unvisited w adjacent to v
 if cost(w) > cost(v) + weight(v,w)
 cost(w) = cost(v) + weight(v,w)
 predecessor(w) = v
DijkstraAlgorithm(G, start)

for all vertices v in G
 cost(v) = ∞;

 cost(start) = 0;

unvisited = all vertices in G

while (unvisited not empty)
 v = unvisited vertex with lowest cost

 unvisited = unvisited - v

 for all unvisited w adjacent to v
 if cost(w) > cost(v) + weight(v,w)
 cost(w) = cost(v) + weight(v,w)
 predecessor(w) = v
DijkstraAlgorithm(G, start)

for all vertices v in G
 cost(v) = \infty;

cost(start) = 0;
unvisited = all vertices in G
while (unvisited not empty)
 v = unvisited vertex with lowest cost
 unvisited = unvisited - v
 for all unvisited w adjacent to v
 if cost(w) > cost(v) + weight(v,w)
 cost(w) = cost(v) + weight(v,w)
 predecessor(w) = v

O(V)
DijkstraAlgorithm(G, start)

for all vertices v in G
 cost(v) = ∞;

cost(start) = 0;

unvisited = all vertices in G

while (unvisited not empty)

 v = unvisited vertex with lowest cost

 unvisited = unvisited - v

 for all unvisited w adjacent to v
 if cost(w) > cost(v) + weight(v,w)
 cost(w) = cost(v) + weight(v,w)
 predecessor(w) = v
DijkstraAlgorithm(G, start)

for all vertices v in G
 cost(v) = ∞;

cost(start) = 0;

unvisited = all vertices in G

while (unvisited not empty)
 v = unvisited vertex with lowest cost
 unvisited = unvisited - v
 for all unvisited w adjacent to v
 if cost(w) > cost(v) + weight(v,w)
 cost(w) = cost(v) + weight(v,w)
 predecessor(w) = v
DijkstraAlgorithm(G, start)

for all vertices v in G
 cost(v) = \infty;

cost(start) = 0;
unvisited = all vertices in G
while (unvisited not empty)
 v = unvisited vertex with lowest cost
 unvisited = unvisited - v
 for all unvisited w adjacent to v
 if cost(w) > cost(v) + \text{weight}(v,w)
 cost(w) = cost(v) + \text{weight}(v,w)
 predecessor(w) = v

O(V)

O(V)

?
DijkstraAlgorithm(G, start)

for all vertices v in G
 \text{cost}(v) = \infty;

\text{cost}(\text{start}) = 0;

\text{unvisited} = \text{all vertices in G}

while (\text{unvisited not empty})
 v = \text{unvisited vertex with lowest cost}
 \text{unvisited} = \text{unvisited} - v
 for all unvisited w adjacent to v
 if \text{cost}(w) > \text{cost}(v) + \text{weight}(v,w)
 \text{cost}(w) = \text{cost}(v) + \text{weight}(v,w)
 \text{predecessor}(w) = v
DijkstraAlgorithm(G, start)

for all vertices v in G

\[\text{cost}(v) = \infty; \]

\[\text{cost}(\text{start}) = 0; \]

unvisited = all vertices in G

while (unvisited not empty)

\[v = \text{unvisited vertex with lowest cost} \]

unvisited = unvisited - v

for all unvisited w adjacent to v

if \[\text{cost}(w) > \text{cost}(v) + \text{weight}(v,w) \]

\[\text{cost}(w) = \text{cost}(v) + \text{weight}(v,w) \]

\[\text{predecessor}(w) = v \]
DijkstraAlgorithm(G, start)

for all vertices v in G
 cost(v) = ∞;

cost(start) = 0;

unvisited = all vertices in G

while (unvisited not empty)
 v = unvisited vertex with lowest cost
 unvisited = unvisited - v
 for all unvisited w adjacent to v
 if cost(w) > cost(v) + weight(v,w)
 cost(w) = cost(v) + weight(v,w)
 predecessor(w) = v

O(V)

O(V)

O(V)

O(V)

O(log(V))
DijkstraAlgorithm\((G, \text{start}) \)

1. for all vertices \(v \) in \(G \)

 \[
 \text{cost}(v) = \infty;
 \]

2. \(\text{cost(start)} = 0; \)

3. \(\text{unvisited } = \text{all vertices in } G \)

4. while (unvisited not empty)

 a. \(v = \text{unvisited vertex with lowest cost} \)

 b. \(\text{unvisited } = \text{unvisited } - v \)

5. for all unvisited \(w \) adjacent to \(v \)

 a. if \(\text{cost}(w) > \text{cost}(v) + \text{weight}(v, w) \)

 \[
 \text{cost}(w) = \text{cost}(v) + \text{weight}(v, w)
 \]

 \[
 \text{predecessor}(w) = v
 \]

\(\text{O}(V) \)
DijkstraAlgorithm(G, start)

for all vertices v in G
 cost(v) = \infty;

cost(start) = 0;

unvisited = all vertices in G

while (unvisited not empty)
 v = unvisited vertex with lowest cost
 unvisited = unvisited - v
 for all unvisited w adjacent to v
 if cost(w) > cost(v) + weight(v,w)
 cost(w) = cost(v) + weight(v,w)
 predecessor(w) = v

\text{O}(V) \quad \text{O}(V) \quad \text{O}(V)
DijkstraAlgorithm(G, start)

for all vertices v in G
 cost(v) = ∞;

cost(start) = 0;

unvisited = all vertices in G

while (unvisited not empty)
 v = unvisited vertex with lowest cost
 unvisited = unvisited - v
 for all unvisited w adjacent to v
 if cost(w) > cost(v) + weight(v,w)
 cost(w) = cost(v) + weight(v,w)
 predecessor(w) = v

O(V)
O(V)
O(V)
O(E + V.log(V))
<table>
<thead>
<tr>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Dijskra’s Shortest Path Algorithm: $O(\ldots)$</td>
</tr>
</tbody>
</table>
Dijkstra will fail...

- If graph contains edges with negative weights
Dijkstra in Java
class Vertex implements Comparable<Vertex> {
 public final int Id;
 public Edge[] adj;
 public double minDistance = Double.POSITIVE_INFINITY;
 public Vertex predecessor;

 public Vertex(int i) { Id = i; }
 public String toString() { return Id +" "; }
 public int compareTo(Vertex other) {
 return Double.compare(minDistance, other.minDistance);
 }
}
class Edge {
 public final Vertex source;
 public final Vertex dest;
 public final double weight;

 public Edge(Vertex argSource, Vertex argTarget, double argWeight) {
 source = argSource;
 dest = argTarget;
 weight = argWeight;
 }
}
public class Graph2 {
 Vertex[] vertices;

 Graph2() {
 vertices = null;
 }

 public static void dijkstraPaths(Vertex source) {
 source.minDistance = 0.;
 PriorityQueue<Vertex> vertexQueue = new PriorityQueue<Vertex>();
 vertexQueue.add(source);

 while (!vertexQueue.isEmpty()) {
 Vertex u = vertexQueue.poll();

 // Visit each edge emanating from u
 for (Edge e : u.adj) {
 Vertex v = e.dest;
 double weight = e.weight;
 double distanceThroughU = u.minDistance + weight;
 if (distanceThroughU < v.minDistance) {
 vertexQueue.remove(v);
 v.minDistance = distanceThroughU;
 v.predecessor = u;
 vertexQueue.add(v);
 }
 }
 }
 }
}

All-Pair Shortest Paths
Warshall, Floyd & Ingerman’s Algorithm
WFIAAlgorithm(matrix weight)
 for i = 0 to V-1 // V= # vertices
 for j = 0 to V-1
 for k = 0 to V-1
 if weight[j][k] > weight[j][i] + weight[i][k]
 weight[j][k] = weight[j][i] + weight[i][k]
Complexity

- **Warshall, Floyd, Ingerman’s Algorithm:** $O(\ldots)$
Topological Sort

Which course should I take first?
Basic Idea

topologicalSort(digraph)
 for v in V:
 find a vertex v with empty adjacency list
 number(v) = i++
 remove v and all edges incident to v from consideration
Algorithm (1)

topologicalSort(digraph) {
 for all v in V:
 num(v) = 0;
 TSnum(v) = 0;
 i = 0;
 j = 0;
 while there is v s.t. num(v)==0
 TS(v);
 return list of v sorted by TSnum;
}
Algorithm (2)

```c
TS( v ) {
    num(v) = i++;
    for all u adjacent to v
    if num(u) == 0
        TS(u);
    else if TSNum(u) == 0
        error("Cycle detected!")
    TSNum(v) = j++;
}
```
Algorithm (2)

TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}
TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}
TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}
\[TS(v) \{ \]
\[\quad \text{num}(v) = i++; \]
\[\quad \text{for all } u \text{ adjacent to } v \]
\[\quad \quad \text{if } \text{num}(u) == 0 \]
\[\quad \quad \quad TS(u); \]
\[\quad \quad \text{else if } \text{TSNum}(u) == 0 \]
\[\quad \quad \quad \text{error}("Cycle detected!") \]
\[\quad \text{TSNum}(v) = j++; \]
\[\} \]
\[\text{TS}(v) \{ \]
\[\quad \text{num}(v) = i++; \]
\[\quad \text{for all } u \text{ adjacent to } v \]
\[\quad \quad \text{if } \text{num}(u) == 0 \]
\[\quad \quad \quad \text{TS}(u); \]
\[\quad \quad \else \text{if } \text{TSNum}(u) == 0 \]
\[\quad \quad \quad \text{error(“Cycle detected!”)} \]
\[\quad \quad \text{TSNum}(v) = j++; \]
\[\} \]
\[TS(v) \] {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}
TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}
\[TS(v) \begin{cases}
 \text{num}(v) = i++; \\
 \text{for all } u \text{ adjacent to } v \\
 \quad \text{if } \text{num}(u) == 0 \\
 \quad \quad TS(u); \\
 \quad \text{else if } \text{TSNum}(u) == 0 \\
 \quad \quad \text{error(“Cycle detected!”)} \\
 \text{TSNum}(v) = j++;
\end{cases} \]
\[
\text{TS}(v) \{
\text{num}(v) = i++; \\
\text{for all } u \text{ adjacent to } v \\
\quad \text{if } \text{num}(u) == 0 \\
\quad \quad \text{TS}(u); \\
\quad \text{else if } \text{TSNum}(u) == 0 \\
\quad \quad \text{error(“Cycle detected!”)} \\
\text{TSNum}(v) = j++; \\
\}
\]

```
num       = 1 4 2 3 5 0 6
TSnum     = 0 0 0 0 0 0 0 1
```
TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}
TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}
\[\text{TS}(v) \{ \]
\begin{align*}
\text{num}(v) & = i++; \\
\text{for all } u \text{ adjacent to } v & \\
\quad \text{if } \text{num}(u) == 0 & \\
\quad \quad \text{TS}(u); & \\
\quad \text{else if } \text{TSNum}(u) == 0 & \\
\space & \quad \quad \text{error(“Cycle detected!”)} \\
\quad \quad \text{TSNum}(v) & = j++; \\
\}
\end{align*}

\text{a} \quad \text{c} \quad \text{d} \\
\text{b} \quad \text{e} \\
\text{f} \quad \text{g}

\begin{array}{cccccccccc}
\text{a} & \text{b} & \text{c} & \text{d} & \text{e} & \text{f} & \text{g} \\
\text{num} & 1 & 4 & 2 & 3 & 5 & 0 & 6 \\
\text{TSnum} & 0 & 3 & 0 & 0 & 0 & 2 & 0 & 1
\end{array}
TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}
TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}

diagram with nodes and edges labeled

num 1 4 2 3 5 7 6
TSnum 0 3 0 0 2 4 1
TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}
\[\text{TS}(v) \{ \]
\[\quad \text{num}(v) = i++; \]
\[\quad \text{for all } u \text{ adjacent to } v \]
\[\quad \quad \text{if } \text{num}(u) == 0 \]
\[\quad \quad \quad \text{TS}(u); \]
\[\quad \quad \text{else if } \text{TSNum}(u) == 0 \]
\[\quad \quad \quad \text{\textcolor{red}{error}}(\text{"Cycle detected!"}) \]
\[\quad \text{TSNum}(v) = j++; \]
\[\} \]
```c
TS( v ) {
    num(v) = i++;
    for all u adjacent to v
        if num(u) == 0
            TS( u );
        else if TSNum(u) == 0
            error("Cycle detected!")
    TSNum(v) = j++;
}
```
TS(v) {
 num(v) = i++;
 for all u adjacent to v
 if num(u) == 0
 TS(u);
 else if TSNum(u) == 0
 error("Cycle detected!")
 TSNum(v) = j++;
}