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Abstract

We present a simple comparison of the performance measured as the total execution time taken to parse

a 27-GByte XML dump of the English wikipedia on three different cluster platforms: Apple’s XGrid, and

Hadoop the open-source version of Google’s MapReduce. We use a local hadoop cluster of Linux workstation,

as well as an Elastic MapReduce cluster rented from Amazon. We show that for selected benchmark, XGrid

yields the fastest execution time, with the local Hadoop cluster a close second. The overhead of fetching

data from Amazon’s Simple Storage System (S3), along with the inability to skip the reduce, sort, and merge

phases on Amazon penalizes this platform targetted for much larger data sets.
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1 Introduction

The aim of this paper is to find the fastest parallel computer cluster for processing Wikipedia dumps and for
generating word statistics. We implement the parsing of the XML dump of the English wikipedia, and the
gathering of word usage an Apple XGrid system, as well as on two Hadoop clusters, one local, the other hosted
by Amazon, and we report on the performance obtained on the different systems.

Apple’s XGrid [8] was released in 1994 and is part of the standard OS X distribution. It is a loosly coupled
system consisting of a controller and many agents. The agents advertise their availability to the controller.
The XGrid offers a low-cost, easy, versatile, and powerful infrastructure for executing data-parallel programs
on tens, or hundreds of Mac computers. Judging from the published literature reporting computational results
on it, it is used mostly in academia and for scientific computing, less so in commercial applications.

Hadoop [15] is an open-source software framework inspired by Google’s MapReduce [6], and runs mostly
on Linux machines, but can also run on other platforms. It supports data-intensive distributed applications
running on thousands of nodes processing petabytes of data, and it is resilient to node failure. Hadoop has a
strong presence in the commercial world, with Yahoo! its main contributor [5].

The two different frameworks target different data processing needs, hadoop for large scale applications
processing petabytes of data where node failure is an expected way of life, and XGrid in a generally smaller
context of a research or eductional institution, on highly data-parallel scientific data. While the XGrid is a
natural choice for parsing the 30 GBytes of a dump of the English wikipedia, in this paper we investigate whether
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hadoop is a contender, and under which conditions the execution time of the parsing process is comparable under
both frameworks.

When low-cost, powerful, and easily accessible parallel computational platforms are available, it is important
to better understand their source of performance and pick the best one for a solving a given problem.

Our results show that the XGrid is the fastest platform for our need, with the local Hadoop cluster a close
second. The size of our data set is too low, and our computation too simple to offset Amazon’s high storage
access overhead. However, Amazon can still provide acceptable support in its multicore single-machine options.

In the next section we review background and state of the art information of comparative studies involving
XGrid and/or Hadoop clusters. Then we set the conditions of our experiments in precise terms. In Section 4,
we present the XGrid cluster and report its performance on our workload. In Section 5 we concentrate on the
local Hadoop cluster first, and then on Amazon’s Hadoop infrastructure. We present our analysis in Section 6,
and conclude in Section 7.

2 Background

The individual performance of the XGrid and Hadoop systems under various loads and conditions have been
reported extensively, but few reports compare them to other systems or to each other. Different studies offer
comparison of grids using different metrics, such as evaluating the scheduling policy only [10].

Because Hadoop follows the approach of Google’s MapReduce, it is well suited to process large data sets in
text format, and its performance and tuning for sorting large text files has been carefully studied [11].

Among the very few published comparisons of hadoop/MapReduce against other computing solutions, that
of Pavlo et al. [12] along with a rebutal by Google’s Dean and Ghemawat [7] stand out. Pavlo et al. compare
the MapReduce paradigm to parallel and distributed SQL database management systems (DBMS), and heralds
the superiority of DBMS in terms of their faster response times and need for fewer CPUs, but concedes on the
superiority of Hadoop for its fault tolerance and ease of installation. Dean and Ghemawat’s rebutal published
in CACM is an indication that the fair comparison of different approaches to solve identical parallel problems
is nontrivial, and the assumptions made in setting up the experiments can greatly influence the results. In the
case of [12], one system requires long pre-processing of the data before storage in the database, but uses efficient
indexing methods to return quick results to multiple queries, while the other does not use preprocessing and
generates one output set with all the results.

Iosup and Epema [9] propose the creation and use of synthetic benchmarks to rate the performance of grids,
and evaluate their system on one system only, which unfortunately uses neither XGrid nor Hadoop.

The work in [13] is a very comprehensive framework for measuring detailed performance measures of various
grids, but their comparative study included world-wide network of research computers, or centralized networks
of Linux workstation, which didn’t include Hadoop or XGrid.

The evaluation of MapReduce on multicore systems presented by Ranger [14] is worth mentioning, and
although it does not compare Hadoop’s performance to that of other grids, it deserves special mention, as
machines with up to 26 cores can currently be rented from Amazon Web services, and present an alternative to
small clusters. We come back to this study in the conclusion section.

As many of the research cited above have stressed, it is a challenging task to provide a fair comparison of the
computational power of systems that operate at different clock speeds, with different memory support, using
different file systems, and with different network bandwidth. None the less, we feel that our attempt to answer
the question of which of XGrid or Hadoop yields the fastest execution time for processing Wikipedia is worth
investigating, and we hope our results will help others in their search for the best computing platform for their
need.

3 Problem Statement

This paper reports on the findings of a simple exploration: find among the available platforms the parallel
approach that provides the fastest parsing of the entire contents of a dump of the English Wikipedia, where
word-frequency statistics is gathered for all pages.

2



Figure 1: Main block diagram of the processing of the XML dump.

The complete process is illustrated in Figure 1. The data dump (pages-articles, dated 10/17/2009) is first
retrived from Mediawiki [3], and then parsed by a serial compiled C++ program, divide, that formats 9.3 million
XML entries into 431 XML files, each containing as many whole entries as can fit in 64 Mbytes. We refer to
these 431 files as splits, according to the hadoop syntax. In a split, each of the individual entries represents a
wikipedia entry, and is formatted as a single line of text. This format allows the use of hadoop’s default input
filter that feeds individual split lines of text to the map tasks.

The 431 splits are then processed in parallel (parallel parse), stop words are removed and word statistics
(most frequent words and groups of words) are computed and stored in some number N of result files (out
files). N varies depending on the platform and configuration used. The contents of these files are then further
processed (not shown in Figure 1) and stored in an SQL database. We do not include this phase in the analysis
reported here.

Our intent is to implement the parallel parse module with hadoop and with XGrid, to compare their relative
performance, and to specify as simply and cleanly as possible the input and output interface so that the
comparison is meaningful. We pick three different frameworks that are easily accessible: a local XGrid cluster
of iMacs, a local cluster of Fedora-workstation running Hadoop, and Amazon’s Elastic MapReduce framework
[1]. The input and output files may reside in different storage systems, that are be selected so as to make the
parallel computation of Wikipedia an easily interchangeable stage of a larger computational pipeline. For this
reason, we include setup, upload and download times of input and output files in our comparison.

The target execution time to beat is 15 hours 34 minutes and 28 seconds (56,068 seconds) for the serial
execution of parallel parse on one of the 2-core iMac workstations used as standard agent in our XGrid, with
all files (executable, input and output) stored on the iMacs local disk. This execution involves only one core,
due to the lack of multitasking of the compiled C++ program.

In the next section we present the XGrid infrastructure and the performance measured on this network.

4 XGrid setup

4.1 Hardware Setup

The XGrid is a collection of iMac workstations located on the same 1-gigabit LAN in the department of computer
science at Smith College. The XGrid controller is an 2.8 GHz 8-core MacPro3.1, with 10 GB Ram. The agents
are 3.06 GHz Intel 2-core duos iMacs, with a maximum of 42 processors available in the grid. The experiments
are conducted at times where the computers are free of users.

4.2 Workload Setup

We use a compiled C++ program to process each of the 431 input files and to generate the output files.
The program uses Nokia’s Qt library [4] for its efficient and versatile string and XML processing capabilities.
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Table 1: XGrid Execution Times as a function of Processors
Number of Processors Execution Times (sec)

25 45 min 11 sec (2,711 sec)
32 41 min 3 sec (2,463 sec)
34 35 min 2 sec (2,102 sec)
41 36 min 0 sec (2,160 sec)

Because not all the nodes in the grid sport the Qt library, a bundle of binaries is created that includes the C++
executable and the set of all the libraries on which it depends.

Because of the number of input files (431) and their size (∼ 64MB), we elect to use batch mode processing.
Unfortunately, due to the size of the binary bundle, and the size of input data files, no more than 4 split files

can be included in a batch script before a dynamic memory allocation error is generated upon submission to the
grid controller. Even if the appropriate limit parameter is modified, the 27 GB of input data would generate a
batch file twice that size, which would block the paging system of our controller.

For this reason, the input files are stored on a Web server on the same subnet as the XGrid, from where
they are downloaded by the XGrid agents. While the output files can easily be generated as temporary file that
are automatically retrieved by the XGrid controller, we elect to have the XGrid agents upload the result files
back to the same local Web server. Our measurements show that the upload to the Web server is less than 1%
longer in relative execution time compared to the automatic handling and downloading by XGrid. The resulting
batch file is 31 MBytes in size, and contains the binary bundle described above, along with multiple single-line
commands specifying the name of the C++ executable followed by the URL of the input split.

4.3 Execution Times

Table 1 presents the average execution times observed when processing the 431 input files on the XGrid. The
best speedup observed is 26.6 for 34 cores, corresponding to the fastest execution time of 2,102 seconds, or 35
min 2 sec. The different node configurations illustrate the variation in node availability typical of workstations
located in public lab spaces.

5 Hadoop Setup

Two different hadoop platforms are used for this test. One is a local cluster of 10 Fedora 2 GHz, quad-core Intel
Linux workstations with 8 GB Ram, on a 1-gigabit LAN. The other is the AWS platform offered by Amazon
[1].

5.1 Hadoop on Local Cluster

5.1.1 Experiment Setup

Cloudera’s patched Hadoop 0.18 distribution [2] is selected to run the experiments because of its robustness and
available support. To same C++ program used on the XGrid is modified to become the map task in Hadoop’s
Map-Reduce organization. In this case we do not use a reduce task, which has the advantage of forcing Hadoop
to automatically upload the local result files generated by the map tasks to distributed file storage. They form
the result files of our computation. The C++ executable is run in streaming mode.

The ten quad-core CPUs form a set of 40 processors to run the Map and Reduce tasks, comparable in
number of cores to the XGrid cluster, with an aggregated processing power of 80 GHz for Hadoop, versus 125.5
GHz for the XGrid cluster.

The 1 gigabit LAN linking the Fedora workstations is the same network linking the iMacs of the XGrid
cluster. Each cluster resides in a lab of its own, in the same building.

The number of map tasks running concurrently (mapred.tasktracker.map.tasks,maximum) is set to 4, as it
yields the fastest execution time. This corresponds to one map task running on each core. This generates 4 x
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Table 2: Execution times on local Hadoop Fedora cluster.
Operation Execution Times
T0: Upload to HDFS 14 min 0 sec ( 840 sec )
T1: Computation only (result in HDFS) 22 min 37 sec (1,357 sec)
T2: Download result from HDFS 1 min 53 sec ( 113 sec)
T3: Computation + I/O (T1+T2) 24 min 30 sec (1,470 sec )
T4: Concurrent Computation and Download 23 min 20 sec ( 1,400 sec)

431 = 1724 output files which are stored directly in the Hadoop Distributed File System, or HDFS, at the end
of the MapReduce computation since the number of reduce tasks (mapred.reduce.tasks) is set to 0.

5.1.2 Performance

The execution times for setting up, executing, and downloading the results of the MapReduce program are
presented in Table 2, and the total time is 1,400 seconds, or 23 min 20 sec. T0 represents the time taken to
upload the input splits to HDFS. This is a required condition for MapReduce applications. This step involves
creating 2 copies (replication factor = 2) of the same split on the distributed (local) disks of cluster workstations.
T1 represents the execution of the MapReduce program, including replication of the binaries to the compute
nodes, execution, and storage of the resulting files in HDFS. T2 is the time taken to download the files from
HDFS to the local disk of a workstation on the same subnet. T3 is the sum of T1 and T2. T4 represents the
time taken if the output files are downloaded from HDFS as soon as they are created, in essence overlapping
execution and I/O. While T4 is slightly lower than T3, we elect to use T3 as the representative quantity, which
will make our comparison easier in Figures 2 and 3 below.

5.2 Hadoop on Amazon Web Services

The C++ map task used in the previous section is first compiled on an Amazon Elastic Compute Cloud (EC2)
[1] m1-large instance initialized with the required applications (qt, qt-devel, emacs, g and make), so that it
can easily be distributed to an elastic MapReduce cluster of m1-large instances later. The m1-large instance
consists of 4 virtual 64-bit cores, 7.5 GB Ram, and 850 GB of disk space. A static bundle of the executable and
all the libraries it depends upon is then loaded in an Amazon Simple Storage Service (S3) bucket where it will
be available to the hadoop infra-structure in the form of cache files.

Because the Amazon platform does not allow for reduce-free MapReduce programs, we modify the map
function (the C++ core compute function) to output each record with the same Id. These records are fed to an
identity reduce function that simply passes the records through unchanged. Note that because the reduce step
must be used, the sorting and merging of the output records are automatically performed by hadoop, a time
consuming step we avoided in the local cluster. This is the reason for our choice of the same Id for all output
records shortens the sorting phase.

Before the computation, the 431 splits are uploaded to S3 storage using Smith College’s high speed network
connection. Then 10 m1-large instances are harnessed into an Elastic MapReduce cluster of 10 nodes, or 40
cores. The resulting files are then downloaded from S3 to a local disk. The 10-node cluster contains 40 cores,
and is the closest match to the XGrid and local Hadoop setups.

5.3 Performance Measurements

The average times observed for the upload, execution, and download operations on the 431 splits on the 10-node
Elastic MapReduce cluster are presented in Table 3. Note that we use the ability of Hadoop to automatically
read compressed data files as well as generate compressed output files, so as to minimize the upload and download
times.

We also measure the execution times of our hadoop program on 5, 10, and 15-node clusters, and record the
execution times in Table 4. The table includes the number of instance hours, which is the number of instances
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Table 3: Execution times on Amazon Web Services.
Operation Execution Times
T0: Upload splits to S3 49 min 17 sec ( 2,957 sec )
T1: Computation only (result in HDFS) 1 hr 19 min 0 sec (4,740 sec)
T2: Download results from S3 16 min 0 sec ( 960 sec)

Table 4: Measured Execution times as a function of cluster size on Amazon Web Services.
Number of Nodes Number of cores Execution Times Instance Hours Efficiency

5 20 2 hr 12 min (7,920 sec) 60 0.19
10 40 1 hr 19 min (4,740 sec ) 80 0.16
15 60 1 hr 6 min (3,960 sec ) 120 0.12
20 80 1 hr 1 min (3,660 sec ) 160 0.10

used per hour of computation, the quantity used by Amazon for billing users. The MapReduce application is
modified for each case so that there can be as many number of reduce tasks as there are cores. We note that even
with twice the number of cores as the local Hadoop cluster, the computation on 80 core takes 3,660 seconds,
close to three times the 1,357 seconds it takes on the 40-core local cluster. We further note that the 5-node,
20-core AWS cluster is the most efficient of the four sizes considered, with an efficiency (speedup/number of
cores) of 0.19, as opposed to 0.16, 0.12, and 0.10 for the other configurations.

Figure 2: Execution times on the three platforms,
XGrid, Fedora Hadoop and AWS Hadoop.

Figure 3: Adjusted execution times for XGrid, Fedora
Hadoop, and AWS Hadoop.

6 Comparative Analysis

6.1 One-Core Processing

The purpose of this section is normalize the times measured on the different networks. We compute the speed of
the three infrastructures relative to each other by processing all 431 splits on a single core of each platform, with
the input and output files retrieved from and stored back on the same Web Server. For the XGrid workstation,
we simply run the compiled, single-thread, C++ program in a shell of the OSX 10.6 workstation. For the hadoop
workstations, we run the program directly from the command line, by-passing the hadoop java framework. In
all cases the splits are fetched from a Web server at Smith College, and the result uploaded back to the same
server, favoring the on-campus computers. The m1-large EC2 instance on Amazon performs the fastest, 1.88
times faster than the XGrid processor, and 1.23 times faster than the Fedora Hadoop core, as illustrated in
Table 5.
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Table 5: Serial execution times and multiplicative factors.
Platform Execution Times X/A X/B X/C
A. XGrid 15 h 57 min 47 sec (57,467 sec) 1.00 1.52 1.88
B. Local Hadoop 10 h 28 min 23 sec (37,703 sec) 0.66 1.00 1.23
C. AWS Hadoop 8 h 28 min 35 sec (30,515 sec) 0.53 0.81 1.00

Table 6: Multithreaded Execution on a 26-core m1-large AWS EC2 Instance.
Operation Execution Time
T0: Download from Web Server to EC2 Instance 28 min (1,680 sec)
T1: Unzip Split and Computation 36 min 22 sec (2,182 sec)
T2: Upload to Web Server 9 min 40 sec (580 sec)
T3: Total (T0+T1+T2) 1 hr 14 min 02 sec (4,442 sec)

6.2 Comparing the Performance of the Parallel Program on all Three Platforms

Figure 2 shows the time taken to transfer 431 input files to the selected platform, process them in parallel, and
get the resulting files back. These times are nicely separated for the Hadoop platforms, but because the XGrid
platform allows individual nodes to download, process, and upload back to the server in parallel with other
nodes, the three different actions are merged into one solid block.

The first observation is that the XGrid performs faster than the other two platforms.
The second observation is that the local Hadoop cluster performs much faster than the AWS cluster. This

can be attributed primarily to the overhead of the S3 storage, as well as the sort and merge phase that follows
the reduce steps in the AWS case. Remember that while we could implement a reduce-less MapReduce program
on the local Hadoop cluster, Amazon does not allow for it. As a result, 40 of the the fastest cores used in this
study take the longest processing time.

We see that for the computation only, the local Fedora hadoop infrastructure is more efficient, with XGrid
a close second. However, because download and upload are integrated in the measured execution time, XGrid
performs actually better than reported.

To reduce the disparity in the architectures and provide a more meaningful comparison, we show in Figure
3 the same data as in Figure 2, but we multiply the execution times on the hadoop platforms by the factors of
Row 1 of Table 5, 1.52 for the local hadoop, and 1.88 for the AWS hadoop. In effect we simulate the hadoop
platforms on XGrid cores. Here again we observe the fastest execution on the XGrid, with the local Hadoop
close to 1.5 times slower, and the AWS hadoop more than 6 times slower.

Figure 4: Time-Lines of the map-reduce-shuffle tasks
on AWS (positive axis) and the map-only tasks on the
local Hadoop cluster. The upper part of the stacked-
area graph shows the number of map, reduce, shuffle
and sort tasks executing as a function of time on the
AWS cluster, while the loower part of the graph shows
the number of map tasks (there are no reduce, shuffle or
sort tasks needed) on the local cluster.

The performance of Amazon’s Elastic MapReduce is disappointing when compared to that of the local
Hadoop cluster because of several reasons. First, it is ill-suited for the small-scale problem we have applied
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it to. Second, it fetching its data from S3 which is a wide-area attched storage, as compared to the locally
stored data of the local Hadoop cluster. Finally because the algorithm does not require a reduce phase, which
is required on Amazon MapReduce clusters, and must be implemented, eating way significant processing power
from the nodes. Figure 4 which shows the time-lines for the Map-Reduce-Shuffle computation on Amazon, and
the Map-only computation on the local hadoop cluster illustrates this difference in performance.

One shouldn’t underestimate the power of the variety EC2 instances available. As an experiment we wrapped
our C++ executable into a multithreaded Python program (using the multiprocessing module, and not the
threads module, which only runs one thread at a time) and ran it on Amazon’s largest instance, a 26-core,
68.4 GB m2.4x-large instance, and recorded its execution time. The transfer of data to and from the Smith
Web server and the threaded computation takes only three times longer that the same operations on the local
Hadoop cluster with almost twice as many cores (40), and with a total execution time of 1 hour 14 minutes it is a
viable option for our purpose. This reinforces the observation of Ranger [14] who observes similar performance
for MapReduce programs on multicores with shared memory as with P-Threads, indicating that HDFS and
network communication are responsible for significant overheads.

7 Conclusions

We have compared three different parallel platform for gathering statistics from an XML dump of the English
Wikipedia. The three platforms include Apple’s XGrid, Hadoop on a local 10-workstation cluster, and Hadoop
on Amazon. Our goal is to pick the fastest platform for processing data of importance in another research
project requiring the collection of statistics from Wikipedia XML dumps. The Wikipedia dumps is divided into
431 input files whose size is selected to contained the maximum number of wikipedia entries while the total size
remains under 64 MB.

Our efforts thus provide one data-point in the comparison of these three platforms, and not a comprehensive
comparison or evaluation of the different parameters influencing the execution times. Such a study, incuding
the tuning of various parameters, such as the size of the input splits, the number of reduce tasks, the C++
library used is left for future work.

Of the three platforms considered, XGrid is found to provide the fastest delays for gathering the input data,
processing them, and storing the result back in a place where it can easily be reached for the next step of
the process. The Local hadoop cluster, with its distributed file system spread over the local disks of the ten
workstations performs almost as well.

While the AWS cluster performs worst of the three, one should remember that this commodity-computing
solution has great appeals, in particular that of requiring no physical or manpower infrastructures to host it or
manage it, and that users pay only for the number of hours the instances are involved in computation. The
2010 cost of performing the processing of Wikipedia on all of the different clusters (5, 10, 15, and 20 nodes) was
less than US-$60.

Another advantage provided by Hadoop clusters is that they tolerate hardware and software failures, and
the parallel computation will continue and succeed even if one or several nodes disappear from the network.
This was clearly evident during one set of our experiments when we had to discard a set of data after discovering
that one of the nodes in the local hadoop cluster had ceased working and did not participate in an unknown
number of experiments. XGrid is not as hardened, and the whole computation will fail if one node fails or is
disconnected during a parallel run.

While AWS hadoop is clearly not the most performant in this case, we strongly suspect that the 27 GB size
of the input data is simply too small to make this platform shine, and that its true power is best expressed on
much larger data sets.
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