Minimum-Perimeter Enclosing \(k \)-gon

Joseph S. B. Mitchell
Valentin Polishchuk
Applied Math and Statistics, Stony Brook University

October 26, 2006

Introduction Let \(P = p_1, \ldots, p_n \) be a simple polygon (all polygons are assumed convex throughout this paper). A fundamental problem in geometric optimization is to compute a minimum-area or a minimum-perimeter convex \(k \)-gon (denoted \(Q^A \) or \(Q^p \), resp.) that encloses \(P \). While efficient algorithms for finding \(Q^A \) are known for more than 20 years \([8,12]\), the problem of finding \(Q^p \) has remained open; the problem is posed as open in \([3,6,7,9,12,14,5]\). Chang and Yap \([8]\) give a comprehensive classification of the inclusion/enclosure problems, but do not mention the minimum-perimeter enclosing \(k \)-gon problem \((\text{Enc}(P_{\text{all}}, P_k, \text{perimeter}), \text{in their terminology}) \) at all.

We give the first polynomial-time algorithms for computing \(Q^p \). In order to obtain our solution, we prove a structural result about an optimal polygon: Local optimality implies that it is “flush” with \(P \) (Lemma 1). As a by-product we obtain an algorithm for finding the minimum-perimeter “envelope” — a convex \(k \)-gon with a specified sequence of interior angles. Our proofs are very simple and are based on elementary geometry\(^2\).

The exact coordinates of the vertices of \(Q^p \) are given by the roots of high-degree polynomials. In general, it is impossible to find the coordinates exactly in polynomial time \([4]\). Thus, given \(\varepsilon > 0 \) as a part of the input to the problem, we will be satisfied with a \((1 + \varepsilon)\)-approximate solution.

Finding \(Q^p \) Our algorithm is based on the following lemma, whose (simple) proof we defer until the next paragraph:

Lemma 1. \(Q^p \) is flush with \(P \), i.e., one of the edges of \(Q^p \) contains an edge of \(P \).

By Lemma 1 we may consider each edge of \(P \) as a candidate flush edge with \(Q^p \) and turn the scene into simple polygon \(\overline{P} \) (Fig. 1). This reduces finding \(Q^p \) to solving \(n \) instances of the problem of finding a shortest \((k + 1)\)-link path in simple polygon \(\overline{P} \), a problem which can be solved in polynomial time \([12]\).

Thus we have our main result:

Theorem 2. \(Q^p \) can be found in polynomial time.

\(1\) A linear-time algorithm exists for the case \(k = 3 \) \([5,11]\).

\(2\) We suggest to solve the minimum-perimeter enclosing \(k \)-gon problem by reducing it to the shortest \(k \)-link path in simple polygon problem. The algorithms of \([12,14]\) for the latter are very non-trivial.

The “Flushness” Condition We prove Lemma 1 with the standard method of “rotating calipers” \([16]\). Suppose \(Q^p \) is not flush with \(P \). Let \(C = \{p_{c_1}, \ldots, p_{c_k}\} \subset \{p_1, \ldots, p_n\} \) be the rocking points of the edges of \(Q^p \); \(C = bdQ^p \cap P \). Then the perimeter of \(Q^p \) is (refer to Fig. 2)

\[
p(Q^p) = \sum_{i=1}^{k} \frac{a_i}{\sin \alpha_i} (\sin \beta_i + \sin \gamma_i) = \sum_{i=1}^{k} \frac{a_i}{\sin \frac{\alpha_i}{2}} \cos \frac{\beta_i - \gamma_i}{2}
\]

Start rotating each edge of \(Q^p \) around its rocking point counterclockwise by an angle \(\theta \); call the polygon formed by such a rotation \(Q^p(\theta) \). Let \(\theta_{\text{min}}, \theta_{\text{max}} \) \((\theta_{\text{min}} < 0 < \theta_{\text{max}}) \) be the angles at which \(Q^p(\theta) \) becomes flush with \(P \). For \(\theta \in [\theta_{\text{min}}, \theta_{\text{max}}] \), \(Q^p(\theta) \) is still a feasible \(k \)-gon, enclosing \(P \). The perimeter of \(Q^p(\theta) \) as a function of \(\theta \) is

\[
f(\theta) \equiv p(Q^p(\theta)) = \sum_{i=1}^{k} \frac{a_i}{\sin \frac{\alpha_i}{2}} \cos \frac{(\beta_i - \theta) - (\gamma_i + \theta)}{2}
\]

Since for each \(i \), \(\beta_i - \theta \) and \(\gamma_i + \theta \) are angles of a triangle, \(|(\beta_i - \theta) - (\gamma_i + \theta)| < \pi \). Thus, as \(\cos(\cdot) \) is a concave function on \((-\pi/2, \pi/2)\), each summand in \((1)\) is a concave function of \(\theta \) for \(\theta \in (\theta_{\text{min}}, \theta_{\text{max}}) \). Hence, \(f(\theta) \) is also concave on \((\theta_{\text{min}}, \theta_{\text{max}}) \) and attains its minimum at one of the ends of the interval, i.e., when \(Q^p(\theta) \) is flush with \(P \). Q.E.D.

Minimum-perimeter envelope DePano and Aggarwal \([10]\) and Mount and Silverman \([13]\) considered the problem of finding the minimum envelope — an enclosing convex \(k \)-gon with a specified sequence of angles. The algorithms in \([10,13]\) for finding the minimum-area envelope \(Q^A_k \) are based (unsurprisingly) on the flushness condition. Note that our “flushness” Lemma 1 actually shows that the minimum-perimeter envelope \(Q^A_k \) is also flush with \(P \) and thus, can be

\(3\) DePano \([9]\) and Chang \([7]\) in their theses proved the lemma for \(k = 3 \); the proof in \([9]\) uses a complicated trigonometric argument, the proof in \([7]\) is based on the similar result about minimum-area enclosing \(k \)-gon \([10]\). Our proof is different from those in \([7,9]\).
found in polynomial time. By following the algorithm of Aggarwal et al. for finding Q_A^P, we prove

Theorem 3. Q_A^P can be found in $O(nk \log k)$ time.

Restricted enclosures In the original statement of the problem, the vertices of the enclosure were allowed to be placed just anywhere in the plane. We propose a generalization, in which two nested polygons P_{out} and $P_{in} \subseteq P_{out}$ are given, and a minimum convex k-gon restricted to lie in between P_{in} and P_{out} is sought. Of course, the difference between unrestricted and restricted enclosures is that the latter may have some vertices on the boundary of P_{out}; following Bajaj we say that such vertices are “bash” with P_{out}. As far as we know, this generalization has not been studied before. The problem may be of interest in a classification task where the idea is to build a low-complexity separator between the data points of two types. We make a first small step in solving this type of problems by giving polynomial-time algorithms for finding minimum-area and minimum-perimeter restricted envelopes Q_A^P and Q_A^P. Our solution is based on the fact that the optimal restricted polygons are “either flush or bash”.

Lemma 4. Q_A^P is either flush with P_{in} or is bash with P_{out}.

Proof. Otherwise, as in the proof of Lemma 1 start rotating each edge of the envelope around its rocking vertex of P_{in} — the perimeter of Q_A^P is a unimodal function of the turn angle and, thus, Q_A^P may be rotated in one of the directions, decreasing its perimeter (Fig. 3).

Next we show that there is only a polynomial number of possible locations for the bash points.

Lemma 5. Suppose that a bash vertex q_i of Q_A^P and the edge e of P_{out} that q_i lies on are given. Suppose that the edges $q_{i-1}q_i$ and $q_{i}q_{i+1}$ of Q_A^P rock on the vertices p_j and p_l of P_{in}. Let C be the circle through p_j, p_l such that the segment p_jp_l is seen at the angle α_i from the points on C; let a_1, a_2 be the points of intersection (if any) of C with e. Then either $q_i = a_1$ or $q_i = a_2$ (Fig. 3).

Theorem 6. Q_A^P may be found in $O(n_{in}^3n_{out})$ time, where n_{in} and n_{out} are the complexities of P_{in} and P_{out}.

Proof. If Q_A^P is flush with P_{in}, find Q_A^P as in Theorem 2. Otherwise, for each triple (p_j, p_l, q_i) (Fig. 3), Q_A^P may be found by wrapping the envelope around P_{in}.

Similarly to Lemma 1 Mount and Silverman showed in that the area of the envelope as a function of the turn angle is unimodal. Thus, the above algorithm also works for finding Q_A^P.

References

