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Abstract—Many document collections of historical interest
are handwritten and lack transcripts. Scholars need tools for
high-quality information retrieval in such environments, prefer-
ably without the burden of extensive system training. This
paper presents a novel approach to word spotting designed
for manuscripts or degraded print that requires minimal initial
training. It can infer a generative word appearance model from a
single instance, and then use the model to retrieve similar words
from arbitrary documents. An approximation to the retrieval
statistic runs efficiently on graphics processing hardware. Tested
on two standard data sets, the method compares favorably with
prior results.

I. MOTIVATION

When people write by hand, they produce forms that
vary in shape even between two instances of the same word.
The differences are most pronounced when comparing the
handwriting of different individuals, but even for a single
writer some variation will be observed. This makes identi-
fying instances of a target word in handwritten collections a
challenging form of pattern recognition. Existing approaches
to word spotting for handwritten documents often require
significant training before retrieval can take place, and the
performance still leaves room for improvement. This paper
describes a novel approach to word spotting based on recent
developments in part-structured models that improves retrieval
precision with little or no training required.

The method described in this paper has not previously
appeared in the scientific literature, but it weaves together ele-
ments of several established lines of research. It represents an
example of one-shot learning, a category of pattern recognition
that attempts to learn a concept class from a single positive
example [1]. The learning process induces a generative model
for word appearance similar to one described by Revow et al.
[2]; however the details differ so as to allow for much greater
efficiency in spotting applications. The framework in this case
takes the form of a part-structured model or PSM [3], but
somewhat different in form from those recently applied with
great success to general-purpose object recognition [4]. One
might also loosely view the models as performing a sort of
flexible Hausdorff matching [5] using a deformable template.

The method also bears some resemblance to several other
techniques in either implementation or spirit. The dynamic
programming implementation resembles methods in level sets
and snake optimization [6], although work in those areas did
not directly influence this effort. The approach also bears
some comparison to dynamic time warping [7], although DTW
allows for only one-dimensional deformation while the method

given here handles two. Finally, comparisons are possible with
branch-and-bound methods used in symbol spotting, which
also search for likely matches of a model shape to an image
[8].

The handwriting recognition and word-spotting fields both
sport results notable as points of comparison to the approach
described herein. Although word spotting does not require full
transcription of a manuscript, a sufficiently accurate recogni-
tion engine can produce a transcript with which word spotting
becomes trivial. However, training recognition systems can be
more involved than spotting mechanisms, and the recognition
process is at least as error-prone as word spotting. Recent
recognition systems suitable for comparison include Frinken et
al.’s method based upon recurrent neural networks [9] and the
related work by Fischer et al. [16]. Results for word spotting
have also been reported by Lavrenko et al. [10], and Howe et
al. [11], among others.

The remainder of this paper includes a section describ-
ing the new method, another section describing experiments
performed, and concludes with a discussion of strengths and
weaknesses.

II. METHOD

Any generative model of character appearance must ac-
count for expected variability by incorporating flexibility to
match observed deformations. Doing so in computationally
tractable form presents a serious challenge, since allowing
flexibility usually implies adding additional degrees of freedom
in the model. The solution adopted here is to heavily exploit
dynamic programming and to choose a model that allows
computation to be reused whenever degrees of freedom are
added. The basic model consists of balls of ink connected via
springlike potentials, and arranged in a tree structure whose a
priori minimum energy configuration conforms to the shape of
the query word or symbol (see Fig. 1). This model draws from
several strands of previous work. In one sense, it corresponds
to a simplified version of the model proposed by Revow et
al. That work used “ink generators” arranged in a spatial
configuration defined by B-splines [2], as opposed to the
simpler displacement model used here. Computationally, the
current work takes inspiration from the part-structured models
introduced by Felzenszwalb et al. for object recognition [4]. In
contrast to the bulk of the work in that area, the models here
employ a far simpler structure at each node and compensate
with a much deeper node tree.

Mathematically, the model consists of a set of nodes Q =
{qi∣i = 1...m} related in a tree structure with a single root



Fig. 1. Part-structured ball-and-spring model of the letter A, left. The shape
that generated this model appears in gray. Parent-child relations are indicated
by black lines. Note the break in the loop necessary to maintain a tree structure.
Remaining images show configurations of the model deformed to match
different observations. The result compromises between the rest configuration
and the observed ink.

qr, 1 ≤ r ≤ m. Without loss of generality, assume r = 1 for
convenience. Define the following notation: qi↑ denotes the
parent of node qi (undefined for qr) and qi↓j denotes the jth
child of node qi, if it exists. Furthermore, Q↓i denotes the set
of all children of qi.

A simple process derives a model of the form just described
from a binary word image: First, thin the image to a medial
skeleton of single-pixel width using a suitable algorithm[12].
Select all points that are endpoints or junctions of the skeleton
to populate the set of nodes. Greedily add to these selections
additional skeleton points as far away as possible from existing
selections but no more than distance d, such that when finished
each skeleton point lies at most d/2 away from one or more
selected points. The parameter d should be set to some sig-
nificant fraction of the mean stroke width (80% for example)
so that disks of ink placed at their centers will overlap to
approximate the original image. Each selected point becomes
the default location of a node. The tree structure is induced by
selecting the node closest to the center of mass as root, and
greedily adding whichever node is nearest to the growing tree,
as a child of the closest node already added. Fig. 1 shows at
left a model generated using the algorithm just described.

A. Configurations

A configuration of the model associates each node qi with
a 2d coordinate vector v⃗i representing its position in the image
plane; V⃗ represents the entire 2 × m matrix of positions.
Each node qi also has an associated default offset t⃗i which
specifies its position relative to its parent in the minimum
energy configuration or rest configuration, and T⃗ represents
the entire 2 ×m matrix of default offsets. The default offset
is intrinsic to a model and remains unchanged regardless of
the current configuration. Figure 1 shows a model in its rest
configuration and two other configurations that incorporate
some deformation to better match an observed ink distribution.

The energy of a particular configuration depends upon the
intrinsic parameters of the model Q, its configuration C, and
observations Ω (image values in the neighborhood of the con-
figuration points). Broadly speaking it consists of two terms,
one describing the deformation of the spring connections in
the model relative to their rest configuration, and the other
describing the match to observed areas of ink. Although not
strictly derived from Bayes’ Law, the first term may be seen
to approximate the negative log prior probability of the model

configuration, while the second term approximates the negative
log posterior probability of the observations given the model.

E(Q,C,Ω) = Eξ(Q,C) + λEω(C,Ω) (1)

The deformation energy Eξ takes the form of a springlike
potential at each parent-child link, centered at its default offset.
Expressing the spring constant as 1

σ2
i

leads to an interpretation
of the deformation energy as a log-likelihood, where the prob-
ability distribution for each position vector is a 2D Gaussian
with variance σi. The total deformation energy may be defined
as the sum of all spring energies.

Eξ(Q,C) =
m

∑
j=2

∥(v⃗j − v⃗j↑) − t⃗j∥
2

2σ2
j

(2)

This is equivalent to the following recursive formulation:

Eξ(Q,C) = E(1)ξ (Q,C) (3)

E
(i)
ξ (Q,C) = ∑

j∶qj∈Q↓i

∥(v⃗j − v⃗i) − t⃗j∥
2

2σ2
j

+E(j)ξ (4)

Although σj could vary for each node, in practice all nodes
use the same value, σj = 1.

The observation energy Eω may take many forms. Previous
applications of part-structured models use complex forms such
as the output of support-vector machines trained as part recog-
nizers, which have demonstrated high accuracy for detection of
diverse objects in photographic images[4]. Although a similar
approach could also be applied to handwriting recognition,
developing the necessary part recognizers requires extensive
training and computational resources. Here the goal is sim-
plicity and computational tractability, leading to a much more
basic formulation. On the other hand, the structural complexity
already embedded in Eξ can compensate for the simplification
of Eω .

Bayes’ Law suggests that Eω should correspond to the
negative log posterior probability of the observations given
the model configuration. Observations containing ink in the
vicinity of each node, and background elsewhere, should have
high probability and thus low Eω . The formulation described
below captures only the first part of this prescription; it does
not contain any terms accounting for image observations away
from the nodes. Nevertheless it proves a highly useful approx-
imation because it supports efficient computation algorithms,
and its indifference to the background context can actually
prove advantageous in applications with noise and/or clutter
surrounding the handwritten text. The second half of the
prescription can be addressed heuristically by performing two-
way matching: plausible candidate matches of template to
observation should be confirmed by verifying that the match
of observation to template also works. This section considers
only the one-way match; details of the two-way confirmation
appear with the experimental description in Section III.

Although handwriting stroke width can occasionally con-
vey information, more often it acts merely as yet another
source of random variation thwarting accurate model matching.
The formulation for Eω therefore works not with an original



document image I , but with a processed version that has
undergone binarization [13], then thinning [12] to a set of
skeleton pixels S. It assigns low observational energy to
configurations where node locations coincide with skeleton
pixels, and high energy to configurations where the nearest
observed skeleton pixels are far from the node locations.

Eω(V⃗ ) =
m

∑
i=1

min
s⃗∈S

1

2σ′2i
∥s⃗ − v⃗i∥2 (5)

Equation 5 represents another springlike energy based upon
the square of the directed chamfer distance [14] from the set
of node positions {vi∣1 ≤ i ≤ m} to the set of skeleton pixels
S. As before, σ′i = 1 in all experiments.

B. Energy Minimization

The energy expression developed in the previous section
is motivated in part by implementation considerations. In
fact, the form chosen permits the efficient evaluation of the
minimum-energy configuration at all possible locations in an
image via dynamic programming. Furthermore, the algorithm
is amenable to parallel implementation and can run on a
commodity graphic processing unit (GPU). This section gives
the details of the implementation.

Felzenszwalb & Huttenlocher describe the generalized dis-
tance transform (GDT) as a useful extension of the ordinary
distance transform, computable in linear time in the number
of pixels[15]. Given a k-dimensional scalar field W , the
generalized distance transform ΓW embodies a related scalar
field that optimizes between the value of W and some function
of the distance to the location where that value occurs.

ΓW (v⃗) = min
u⃗∈Òk

[W (u⃗) +D(u⃗, v⃗)] (6)

This paper uses D(u⃗, v⃗) = 1
2σ2 ∥v⃗− u⃗∥2 throughout, with σ = 1

in all cases. Eqn. 5 may be written in terms of a GDT ΓS̃ ,
with S̃ zero where S is 1 and infinite elsewhere.

Eω(V⃗ ) =
m

∑
i=1

ΓS̃(v⃗i) (7)

Felzenszwalb & Huttenlocher employ the GDT in their
paper introducing the concept of part-structured models[3], and
this work follows theirs closely. Consider the recursive formula
for the deformation energy in Eqn. 4. When combined with
Eqn. 5, it yields a recursive formula for the energy as a whole.

E(i)(Q,C,Ω) = λΓS̃(v⃗i)+ ∑
j∶qj∈Q↓i

∥(v⃗j − v⃗i) − t⃗j∥
2

2σ2
j

+E(j) (8)

Now suppose that the model Q and observations Ω are
known and fixed, and one seeks to compute the minimum
possible energy along with the configuration that achieves it. In
particular, consider constraining the root node position v1 to an
arbitrary vector v⃗ and minimizing the energy over all possible
descendent node configurations v2...vm. If this is performed

for every possible root node location, it defines a scalar field
of minimum constrained-root energies E .

E(v⃗) ≡ min
C∣v1=v⃗

E(Q,C,Ω) (9)

Subtree energy fields E(i) are defined by analogy, fixing the
subtree root and minimizing over all possible descendant node
configurations. A recursive formulation allows for efficient
computation. For nodes without children, observations alone
determine the energy:

E(i)(v⃗) = λΓS̃(v⃗) if Q↓i = ∅ (10)

For nodes with children, one must include the possible child
configuration energies in the minimization.

E(i)(v⃗) = λΓS̃(v⃗) + ∑
j∶qj∈Q↓i

min
v⃗j

⎡⎢⎢⎢⎢⎣

∥(v⃗j − v⃗) − t⃗j∥
2

2σ2
j

+ E(j)(v⃗j)
⎤⎥⎥⎥⎥⎦

(11)
The second term may also be computed using a GDT:

E(i)(v⃗) = λΓS̃(v⃗) + ∑
j∶qj∈Q↓i

ΓE(j)(v⃗ + t⃗j) (12)

Note that Eqn. 12 can be computed over entire image pixel
grids, where the terms in the summation are themselves grid
values shifted by tj with interpolation if necessary, followed
by a GDT. Such a grid computation can be used as a detector.
Low energy values correspond to root locations of a high
probability configuration, so that finding the energy minima
equates to detecting plausible configurations of the modeled
text. Computing E(i) using Eqn. 10 requires a single distance
transform. Computing E(i) using Eqn. 12 requires an interpo-
lated translation and a distance transform for each descendant
of qi. Both the translation and the distance transform are linear
computations in the number of pixels n. Thus computing E
takes O(mn) time on a single processor.

If sufficient resources are available the translation and
distance transform can be parallelized for each pixel, making
E computable in O(m) time. Translation and interpolation
are easily parallelized on a GPU. The single-processor GDT
algorithm described by Felzenszwalb & Huttenlocher[15] is
not well suited to current GPU architectures because it gener-
ates unpredictable memory access patterns. However, a simple
approximation algorithm that simply computes Eqn. 6 for all
pixels within a neighborhood of square radius r parallelizes
well and works adequately. So long as r > maxmj=1 tj this
approximation to the generalized distance transform will ac-
curately compute all low-energy configurations, which are the
only ones of interest. On current hardware (NVIDIA GeForce
GTX 480), matching a word model to a high-resolution (8
megapixel) page image takes on the order of one second,
depending on the number of nodes in the model, compared
with a minute or more on a single CPU core.

The value of λ in Equation 1 is a free parameter of
the model, governing the tradeoff between configurations that
minimize the configuration energy Eξ(Q,C) and those that
minimize the observation energy Eω(C,Ω). It is set to 2.0 in
all the experiments for historical reasons. Future work should
investigate optimization on this parameter.



C. Recovering Configurations

Eqn. 12 gives a formula for computing the minimal config-
uration energy across a document image for any part-structured
model of the form previously described. It is often useful to
know the exact configuration (or one possible configuration if
the solution is not unique) corresponding to that energy. This
can be recovered using a backtracking technique analogous to
those used in other forms of dynamic programming. During
computation of the generalized distance transform, the algo-
rithm must keep track of the vector u that gave the minimum
value in Eqn. 6.

ΛW (v⃗) = arg min
u⃗∈Òk

[W (u⃗) +D(u⃗, v⃗)] (13)

Now beginning from a particular root location v1 the
position of its children may computed, and so on until all
vi have been found.

⃗vi↓j = v⃗i + ⃗ti↓j +ΛEi↓j (14)

Figure 2 visualizes the matching process for a concrete
example. At left the first row shows the original character
image, with the thinned skeleton superimposed. The next
image to the right shows the matching energy for a single node,
ΓS̃ , which can match at any of the skeleton points. The next
image shows E(i) for a subtree of the model containing the six
nodes at the top of the letter. This subset of nodes matches the
image fairly well at three spots, as indicated by the three dark
areas in E(i); the three corresponding subtree configurations
appear to the left in the second row. The rightmost image
shows E , the matching energy for the entire model, above the
model corresponding configuration. The single deep minimum
reflects the fact that there is only one good configuration for
a full model ’a’ on this image.

Fig. 2. Partial and complete matches of a PSM to observations.

III. EXPERIMENTS

The method is validated on several established data sets.
The George Washington (GW20) set comprises 20 pages from
the official correspondence of George Washington [10]. Some
of the images contain vertical rule lines which are removed
in a preprocessing stage. The Parzival set comprises 47 pages
from a medieval manuscript. Word-spotting results for both
have appeared recently [16] and the images are available
to researchers for download. Although GW20 includes the
writing of several of Washington’s secretaries, both show

Fig. 3. Mean precision vs. recall for GW20 over all query words.

less variation in handwriting style than many multi-writer
collections.

The public distribution of both data sets include word
segmentations. Fitting the PSM does not rely on the segmen-
tation, but it simplifies the experimental procedure to record
the lowest configuration energy over all points within the test
word bounding box BB(y).

M(x, y) = min
v⃗∈BB(y)

Ex(v⃗) (15)

This will identify good matches of the query word x to the
test word y, but also allows subset matches such as ‘and’
to ‘Alexandria’. The reverse match M(y, x) must therefore
be computed to confirm each candidate match. The final
symmetric match score M∗ takes the larger of the two one-way
matchings.

M∗(x, y) = max(M(x, y),M(y, x)) (16)

For a given query word, test words are retrieved in order
of ascending M∗. Figures 3 and 4 show the resulting mean
precision vs. recall curves for each collection. These are
averages over all the words that appear at least once in both the
training and test sets, using the same train/test split as Fischer
et al. [16].1 Because word models vary in their response
levels, the averaged curves are generated using response rank
order without maintaining a global threshold consistency. Also,
words that appear more than once in the training set allow for
spotting with multiple models, where the match score of a
given target word is taken as the best match over all available
models. The mean precision values for the two experiments are
93.4% and 88.2% respectively. These exceed the best prior
results for GW20 (84%) and approach the best for Parzival
(94%), using the same folds and keywords [9].

Both GW20 and Parzival do include many words appearing
as singletons in the training set, and the resulting model
nevertheless does well at identifying the corresponding word
in the test set. This accounts for the high precision at 100%
recall, which at 78.9% and 68.4% respectively is much higher
than the level seen in prior work [9]. Figure 5 shows some
sample matches for a singleton query from the GW20 test set.

1Since the part-structured models require no extra data for validation, the
training and validation sets are combined.



Fig. 4. Mean precision vs. recall for Parzival over all query words.

Fig. 5. Sample GW20 retrievals for singleton query word ‘Carlyle’ (top).
The three appearances in the test set have the best three match scores. The
next closest word is ‘hereby’. Red lines show the deformation of the model.

IV. DISCUSSION

Part-structured models offer several attractive features for
word spotting. Because they are generated automatically from
one or more query images, they do not require large training
sets to perform well. They need not be applied only at the
word level; both fragments of words and multi-word phrases
can also serve. Although using multiple word instances as
a query may add some robustness to variation in form, the
method performs well even with a single example. The results
presented in Section III exceed the best prior performance on
GW20 by a considerable margin.

The method presents a few drawbacks, although none
insurmountable. Computation speed is fast enough for small
scale searches, taking on the order of one second per full
scanned page. Using the technique with larger collections
will require either prescreening to reduce the search space,
or caching of precomputed results. In addition, part-structured
models perform poorly in situations where the query and the
target word vary in scale by more than about 20% in either
direction. When such size variation appears in the collection to
be searched, it will be necessary to match scales by expanding
or reducing the model before computing the spotting score.
Adjusting the model scale is computationally simple, but the
best method for estimating the proper scale factor remains a
matter for future work. Finally, a one-shot PSM will struggle
in cases where the query and target words differ greatly in
underlying letter form, as may be seen with multiple-writer

data. More research is necessary to handle such conditions. For
example, multiple query examples may be required to cover
the target space.

The PSM may also provide other benefits beyond the
word spotting application. Since the model configuration is
recoverable for any match, the internal structure is accessible.
This may open applications that require character segmenta-
tion, for example. Models generated from online input may
also be interesting, because the temporal information from the
online word may be transferrable to offline data. It will be
interesting to see what applications can be devised for this
new handwriting word model.
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