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Abstract

Motivated by a VLSI masking problem, we explore partitions of an
orthogonal polygon of n vertices into isothetic rectangles that maximize
the shortest rectangle side over all rectangles. Thus no rectangle is “thin”;
all rectangles are “fat.” We show that such partitions have a rich struc-
ture, more complex than what one might at first expect. For example, for
partitions all “cuts” of which are anchored on the boundary, sometimes
cuts are needed 1

2
or 1

3
of the distance between two polygon edges, but

they are never needed at fractions with a larger denominator. Partitions
using cuts without any restrictions seem especially complicated, but we
establish a limit on the “depth” of cuts (roughly, how distant from the
boundary they “float” in the interior) and other structural constraints
that lead to both an O(n) bound on the number of rectangles in an op-
timal partition, as well as a restriction of the cuts to a polynomial-sized
grid. These constraints may be used to develop polynomial-time dynamic
programming algorithms for finding optimal partitions under a variety of
restrictions.

1 Introduction

VLSI masks are etched by electron beams of some fixed minimum width. Com-
plex shapes can only be masked without unnecessary overexposure if they can
be partitioned into rectangles all of which are wider than this minimum width.
Thus it is of some interest to develop an algorithm that can find an optimal
partition of a polygon into rectangles, in the sense of maximizing the shortest
side of any rectangle in the partition.1
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Although this was our original motivation, our algorithms are too complex
to be of assistance in designing masking strategies. In this paper, we pursue the
partitioning problem without regard to practical photolithography concerns. In
particular, we study the structure of optimal partitions of simple, orthogonal
polygons (simple polygons whose edges meet at right angles) into isothetic rect-
angles (rectangles whose sides are parallel to the polygon edges) satisfying two
criteria:

1. The shortest side length δ of any rectangle in the partition is maximized
over all rectangle partitions, i.e., there is no strictly “fatter” rectangle
partition.

2. Among those partitions with the same δ, an optimal partition must in
addition employ the fewest number of rectangles.

We will consistently use δ to represent the shortest side length over all rectan-
gles in a given partition. The first and primary criterion (fatness) in general
leaves the optimal partition highly underdetermined, for the presence of one
unavoidably thin rectangle in the partition permits considerable freedom in the
remaining rectangles as long as they are fatter than δ. The secondary criterion
(fewest number) controls this somewhat, but still leaves the optimal partition
underdetermined: in general there are many equally optimal partitions. Thus
it is not possible to tightly characterize all optimal partitions. But the theme of
our work is to show that there is always some optimal partition with particular
structural properties, structural properties that lead to algorithms.

In two abstracts [OPT01, OT02] we claimed polynomial-time algorithms for
finding optimal partitions under a variety of restrictions (including no restric-
tions). Although we repeat these claims here, we do not formally establish
them, for the following reasons. First, the time complexities are very large and
unlikely to be anywhere near optimal. Second, the algorithms are all complex
dynamic programming algorithms. Third, careful proofs of correctness for the
algorithms would require going well beyond our abstracts and the supporting
details in student reports [Pas01, Tew02]. Instead we concentrate on the struc-
tural properties of optimal partitions, in the hope that they will lead to cleaner
and more efficient algorithms.

1.1 Related Work

The two main optimization criteria that have been explored in the problem of
partitioning orthogonal polygons are: minimizing the number of rectangles, and
minimizing the total length of the cut segments needed to cut out the rectangles.
Improving on several earlier results, Liou et al. found an O(n) time algorithm
to optimally partition an orthogonal polygon without holes into the minimum
number of rectangles [LTL89]. Lingas et al. were the first to investigate the
second, “minimum ink” optimization criterion. They presented a O(n4) time
algorithm for optimally partitioning an orthogonal polygon without holes into
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rectangles [LPRS82]. For a polygon with holes, they showed that the problem
is NP-complete.

There has also been research on covering orthogonal polygons by rectangles,
but this work is less relevant to our concerns. See [Kei00] for a survey of polygon
decomposition algorithms.

2 Cut Types and Results

Our analysis focuses on the cuts used to separate the rectangles in a partition.
Roughly, a cut is a maximal segment of the partition whose relative interior is
strictly interior to the polygon; see Section 3 for a more precise definition. It
is natural to wonder if the cuts may be restricted in any way without altering
the optimum δ of partitions. For example: Is there always an optimal partition
such that at least one cut connects two boundary points, i.e., cuts all the way
through? Fig. 1 shows that the answer is no. Let us distinguish three types of
cuts:

1. Vertex cuts: those incident to a polygon vertex.

2. Anchored cuts: those touching (anchored on) a point of the polygon’s
boundary. (Vertex cuts are special cases of anchored cuts.)

3. Floating cuts: those which are strictly interior to the polygon—they “float”
in the interior.

(Later it will be useful to call all nonvertex cuts movable cuts.)

Figure 1: No cut in this opti-
mal partition connects boundary-
to-boundary.

Figure 2: Not all cuts in the opti-
mal partition are vertex cuts: the
central cut is anchored but not inci-
dent to a vertex.

Is there always an optimal partition using only vertex cuts? Fig. 1 uses only
vertex cuts, but Fig. 2 employs (necessarily) one cut that includes no vertex. Is
there always an optimal partition with every cut lying on the vertex grid formed
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Cut type Time complexity Reference

vertex cuts O(n5) [OPT01]

anchored cuts O(n10) [OT02, Tew02]

unrestricted cuts O(n42) [OT02, Tew02]

Table 1: Dynamic programming algorithm time complexities.

by all horizontal and vertical lines through all polygon vertices? Fig. 2 again
provides a counterexample. Could we say that no reflex vertex ever need be
incident to two cuts? Fig. 3 shows this is too strong a claim. Is there always
an optimal partition such that every cut is anchored? Figures 1-3 use only
anchored cuts, but Fig. 4 employs (necessarily) one floating cut.

1

1

3

3

2

2

v

Figure 3: Two cuts incident to a re-
flex vertex v in the optimal parti-
tion. Edges are labeled with their
lengths.

Figure 4: Not all cuts in the optimal
partition are anchored: the central
cut is floating.

Other optimality criteria permit some of these restrictions. For example, the
minimum number of rectangles can be achieved via vertex cuts [LTL89]; and
the minimum total cut length can be achieved by anchored cuts lying on the
vertex grid [LPRS82]. To find optimal partitions independent of restrictions,
we must include floating cuts. Nevertheless, it is interesting to explore optimal
partitions under the restriction that all cuts are vertex cuts, or all are anchored
cuts. In [OPT01] we showed that restriction to vertex cuts permits a dynamic
programming algorithm similar to that in [LTL89] to find an optimal partition
in O(n5) time. We implemented the algorithm, and discovered that, on random
orthogonal polygons, it appears to run in O(n2) time. A sample of the code’s
output is shown in Fig. 5. In [OT02] more complex structural constraints led
to increasingly worse but still polynomial-time algorithms for finding optimal
partitions, as summarized in Table 1. All three algorithms follow a similar
dynamic-programming structure, although we could only handle floating cuts
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Figure 5: A polygon of n = 348 vertices optimally partitioned by vertex cuts
into 155 rectangles. The tied-for-thinnest rectangles are shaded dark.
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(unrestricted cuts) with an intricate algorithm [OT02, Tew02] that leads to the
large upper bound indicated.

The support for these algorithms is a collection of geometric and combina-
torial theorems on the structure of optimal partitions. Vertex cuts are already
restricted to lie on the vertex grid. We show in Theorem 6 that anchored cuts
fall on the vertex grid, or on midlines or thirds-lines between the lines of the
vertex grid (but not fourths-, etc.). Our most complex structural result is that
an (unrestricted) optimal partition never includes floating cuts that are too
“deep” in the polygon interior (Theorem 12): cuts floating deep in a “sea” of
floating cuts are never necessary. This leads to an O(n) bound on the number
of rectangles in an optimal partition (Theorem 14), and a restriction of floating
cuts to lie on a grid of O(n4) lines (Theorem 17). As a consequence, we obtain
a polynomial-size set of candidate cuts from which an optimal partition can be
selected.

3 Cut Properties

Vertex cuts are already so restricted that little additional structure is needed
for an algorithm. However, there are two issues concerning the definition of a
cut that need clarification. Let S be the set of points of a rectangle partition
of a polygon P that (a) lie on some rectangle boundary, and (b) are strictly
interior to P . We define a set C of cuts for the partition to be a collection of
closed segments satisfying these properties:

1. The union of all cuts in C is equal to the closure of S.

2. The relative interiors of the cuts (i.e., the cuts without their endpoints)
are pairwise disjoint.

3. The cuts are maximal in the sense that no two collinear cuts in C can be
merged without violating pairwise disjointness.

Criterion (2) rules out two cuts crossing by definition, for if they cross, they
share an interior point. Thus, the partition shown in Fig. 6(a) is not a partition
by vertex cuts, for the two boundary-to-boundary segments incident to a and
b cross. This partition must be viewed as employing at least one anchored
cut, say, the right half of the segment incident to a. The optimal partition
using only vertex cuts results in a thinner rectangle, as shown in in Fig. 6(b).
We defined cuts to be maximal and thus noncrossing because permitting them
to cross introduces nonlocal effects that undermine the dynamic programming
algorithm.

The second issue concerning the definition of cuts is that a given partition
does not uniquely determine a set of cuts, due to criterion (3). Nonuniqueness
occurs at +-junctions, such as at the intersection of the b- and c-cuts in Fig. 6(b).
In this case, the b-cut must go through the intersection, leaving a c- and d-cut
to either side, in order to remain a partition by vertex cuts. But in general there
is a choice, e.g., if there were a vertex at the other end of the b-cut, or if the
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Figure 6: (a) The segments incident to a and b cross, so this is not a vertex-cut
partition. (b) The optimal vertex-cut partition.

cuts were not restricted to vertex cuts. To facilitate later reference, we elevate
this simple consequence of our definition to a lemma:

Lemma 1 An endpoint of a cut is either at a vertex, on an edge of the polygon,
or at an interior point of another cut.
Proof: If a cut has an endpoint interior to the polygon but not at an interior
point of another cut then, as Fig. 7(a) shows, there must be at least one other
cut incident to the endpoint in order to surround that point by rectangles; but,
as (b) shows, this would result in (at least) two collinear cuts, which violates
the maximality of the definition of a cut. In the case illustrated, either c1∪c2 or
c3∪c4 could be considered one cut, in which case the other two would terminate
on an interior point of that cut. 2

c
1

c
2

c
4

c
1

c
2

c
3

(a) (b)

Figure 7: (a) Two such cuts cannot share an endpoint interior to the polygon;
(b) Such collinear cuts are not maximal.

4 Anchored Cuts

The example in Fig. 2 suggests that anchored cuts can be chosen to lie on lines
midway between two edges, for it would seem to be advantageous to slide such
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a cut to balance the dimensions of the rectangles supported to either side. We
were therefore surprised to discover the example shown in Fig. 8, which has
the property that the optimal partition needs to use two anchored cuts which
are not midway between any pair of edges, but rather lie at one-third and two-
thirds between two edges. (We will not pause to prove that the partition shown
is the only optimal one [Tew02, pp. 22–25].) Call a partition that uses only

0 1

3

7

89

11

13

15

0 1

3

7

89

11

13

15

δ

δ

δ

Figure 8: An n = 16 orthogonal polygon and its unique optimal partition. The
three shaded rectangles are δ = 8 wide. Light lines indicate grid dimensions.
The two vertical anchored cuts are not midway between any pair of vertices,
but lie 1

3
and 2

3
’s between vertices 3 and 11.

anchored cuts an anchored partition. Call a rectangle in an optimal partition
a δ-rectangle if at least one of its dimensions is δ, the minimum rectangle side
length throughout the partition. Say that a cut c supports a rectangle R if one
of R’s sides shares a positive-length portion of c.

We define a segment a to hit a segment b if an endpoint of a coincides with a
nonendpoint of b. Note that this definition is not symmetric. For the symmetric
notion, we use the term touch (or incident): two segments touch if they share
a point.

We need to distinguish the anchored cuts that are not vertex cuts. Define
all nonvertex cuts as movable cuts; these are the cuts that are “potentially
movable.”

The following lemma will show that the situation in Fig. 8 is in a sense the
worst that can happen with movable anchored cuts:

Lemma 2 No optimal anchored partition includes three parallel movable cuts
supporting two δ-rectangles between them.

If this lemma were false, then anchored cuts might need lie on, say, quarter-
lines. But with only two parallel anchored cuts, a “δ + δ + δ” configuration as
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illustrated in Fig. 8 is the most complex possible. This leads to the algorithm
listed in Table 1, as we will show at the end of this section.

Because anchored partitions are of less intrinsic interest than unrestricted
partitions, we choose to only sketch the proof of Lemma 2, via Lemmas 3 and 4
below, which we will apply again in Section 5.

Lemma 3 A movable cut f in an optimal partition must have two cuts hitting
it from opposite sides that are separated by strictly less than δ. We call such
cuts (< δ)-staggered.
Proof: Suppose otherwise. Then remove cut f , assumed vertical without loss of
generality. The rectangles hitting each side of f lengthen horizontally but may
shorten each other vertically as their horizontal top and bottom cut through
one another; see Fig. 9. Note that because f is movable, neither endpoint is
a vertex, so the horizontal lengthening does not introduce any new rectangles.
However, because any pair of cuts hitting f are separated by ≥ δ, this “slicing
up” cannot produce a side length < δ. Therefore the new partition does not
diminish δ. It reduces the number of rectangles by 1. Therefore the original
was not optimal, a contradiction. 2

< δ

f

Figure 9: Opposing cuts hitting f must be staggered by < δ. Removal of f
replaces 5 rectangles by 4.

Lemma 4 An optimal partition does not include a δ-rectangle supported on
opposite sides by parallel δ-separated movable anchored cuts (i.e., anchored but
nonvertex cuts) which both hit the boundary at their endpoints to the same side.

Proof: (Sketch.) Let c1 and c2 be the movable anchored cuts, oriented vertically
without loss of generality. Suppose in contradiction to the lemma, the cuts c1

and c2 terminate on edges above (i.e., to the same side). They can terminate
on two distinct noncollinear edges, or on two distinct collinear edges, or on the
same edge e. In this sketch we only prove the last case: Both c1 and c2 terminate
in the same edge e above.

Let y1 ≥ y2 be the y-coordinates of the lower endpoints of c1 and c2; see
Fig. 10(a). Let a be the lower endpoint of c1. It must be true that there are no
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vertices of the polygon on the horizontal closed segment between a and c2. For
if there were this vertex, it would squeeze in a rectangle of width < δ between
it and c2. Therefore c1 is not supported by hitting (< δ)-staggered cuts, as it
can have no such cut from its right. This violates Lemma 3, as it would lead
to the improved partition in Fig. 10(b). Therefore the assumed partition could
not have been optimal, a contradiction.

c
1

e

R c
2

a
y

1

 y
2

δ

(a) (b)

e

c
2

a
 y

1

y = y
2

Figure 10: The partition is improved if c1 is removed.

The other two cases lead to similar contradictions from the presence of a
vertex that forces a thinner rectangle. 2

We are now prepared to sketch a proof of Lemma 2, ruling out more than two
parallel δ-separated movable anchored cuts.

Proof: (Sketch.) In an optimal partition, if parallel δ-separated anchored
cuts exist, then:

c
1

c
2

δ

Figure 11: Contradic-
tion to Lemma 4

c
1

c
2

δ

Figure 12: Two adja-
cent anchored cuts.

c
1

c
3

c
2

δ δ

Figure 13: Three adja-
cent anchored cuts.

1. Each movable anchored cut must be supported by (< δ)-staggered cuts
hitting it, as per Lemma 3.
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2. Lemma 4 excludes the situation shown in Fig. 11. So they must be aligned
as shown in Fig. 12.

Therefore the structure of three parallel adjacent movable anchored cuts must be
as shown in Fig. 13. Suppose, contrary to the lemma, that an optimal partition
has three vertical parallel δ-separated movable anchored cuts. Let the three
cuts ci have upper and lower endpoints ai and bi respectively, and left and right
staggered cuts li and ri, for i = 1, 2, 3 hitting them. Without loss of generality
let b1 and b3 hit the polygon boundary; then by the reasoning above, b2 does not
hit the boundary, and thus must hit another cut, d2. Let y(p) be the (vertical)
y-coordinate of a point p. Without loss of generality let y(b1) ≤ y(b3). In this
sketch we consider only one of three cases depending on the relation of y(b2)
with respect to [y(b1), y(b3)]: y(b1) ≤ y(b3) ≤ y(b2) (See Fig. 14.)

b
1

b
3

b
2

r
2

l
2

a
3

a
2

a
1

d
2

c
1 c

3

c
2

δ

δ

Figure 14: Case: y(b3) < y(b2).

Consider the left staggered cut l3 supporting c3. Its left end must lie on the
polygon boundary (because it is anchored). But c3 must project leftwards onto
c2 (within the range [y(b2), y(a3)] or c1 (within the range [y(b3), y(b2)] without
any intervening boundary points. For suppose there were a boundary point p
in this range, such that the horizontal segment from p to c3 is interior to the
polygon. Then p must fall somewhere horizontally between c1 and c3. It cannot
lie on c1 or c2. Two subcases arise:

1. p is not collinear with c2. Then p lies strictly between c1 and c2, or c2
and c3. This forces a subdivision of that δ-column, resulting in a rectangle
partition < δ, a contradiction.

2. p is collinear with c2. Then the polygon boundary must enter the δ-
column to the left or right somewhere between p and d2, again forcing a
subdivision of that column, resulting in the same contradiction.
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The other cases we are not including here ([Tew02, pp.28–33]) lead to similar
contradictions from forced splittings of δ-columns. 2

Compacting the rectangles in a partition leftwards leads to this:

Lemma 5 There exists an optimal partition such that every (vertical) movable
anchored cut supports a δ-rectangle to its left.
Proof: (Sketch). Otherwise, an unsupported cut could be slid to the left with
no resulting change in the optimality of the partition. 2

Finally, the following theorem is now straightforward:

Theorem 6 There exists an optimal anchored partition such that every movable
anchored cut has coordinate:

1

2
a+ 1

2
b or 1

3
a+ 2

3
b

where a and b are (either x or y) coordinates of two vertices.
Proof: The proof proceeds by separately examining the x-coordinates of one,
two, and three or more parallel movable anchored cuts in an optimal partition
(The argument is identical for y-coordinates). Let x(p) be the x-coordinate of
a point p, and x(s) the x-coordinate of a vertical segment s.

c

e

c'

> δ

a

b

 δ

Figure 15: Case 1: c can be moved to a midline c′.

1. A single movable anchored cut.

Without loss of generality, let a polygon edge e be to the right of a vertical
movable anchored cut c, as in Fig. 15. By Lemma 5, c must support a
δ-rectangle to its left that is bounded by a polygon edge or vertex cut.
Therefore x(c) − δ must equal x(a) for some vertex a. Let a vertex b lie
on e. Let the x-coordinate of an anchored cut c′ be:

x(c′) =
1

2
x(a) +

1

2
x(b)

c can be replaced by c′, the midline of the horizontal distance between a
and b, without any change in the optimal partition.
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e

c1

 δ

 δ

c2

> δ

a

b

c1' c2'

Figure 16: Case 2: c1 and c2 can be moved to c′1 and c′2 that lie on third lines.

2. Two parallel δ-separated movable anchored cuts.

Let c1 and c2 be two movable anchored cuts, and let e be the polygon
edge to the right of c2. As established by Lemma 5, c1 must support a
δ-rectangle to its left that is bounded by a polygon edge or vertex cut.
Therefore x(c1) − δ = x(a) for a vertex a. Let a vertex b lie on e. Let a
movable anchored cut c′1 satisfy

x(c′1) = [x(a) + 2x(b)]/3 =
1

3
x(a) +

2

3
x(b)

Let a movable anchored cut c′2 satisfy

x(c′2) = [2x(a) + x(b)]/3 =
2

3
x(a) +

1

3
x(b)

c1 and c2 can be replaced by c′1 and c′2, which lie on third-lines between a
and b, without any change in the optimality of the partition. See Fig. 16.

e

c1

> δ
 δ

 δ

c2

 δ

c3

a

b

Figure 17: Case 3: Contradiction to Lemma 2.

3. Three or more parallel δ-separated movable anchored cuts

This is a contradiction to Lemma 2. See Fig. 17.
2

Theorem 6 leads to anO(n2) set of possible anchor points along the boundary
of the polygon: at all the vertices, and at all the { 1

3
, 1

2
, 2

3
} coordinates between
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each pair of edges. Treating each anchor point as a “pseudovertex,” and applying
the O(n5) vertex-cut algorithm [OPT01], yields the O(n10)-time algorithm in
Table 1.

5 Unrestricted Cuts

Lemma 2 led us to wonder if a similar result might not hold for floating cuts.
Fig. 18 shows that no easy generalization is possible.

δ

δ

δ

δ

δ

e
1

e
2

Figure 18: The unique optimal partition employs four vertical cuts at multiples
of one-fifth between polygon edges e1 and e2. The shaded rectangles are each δ
wide.

Here the positioning of four cuts—two anchored and two floating—is de-
termined by a chain of five δ-rectangles. Generalizing the example shows that
1/k-th lines might be necessary for any k = O(n).

Although in such an example, the position of some central cuts is determined
by distant edges, none of these cuts is “far” from the boundary in another sense.
To make this sense clear, we introduce the notion of the depth of a cut. Cut
depth is defined inductively:

1. Vertex cuts have depth 0. Polygon edges are also defined to have depth
0, being viewed as cuts that touch their vertex endpoints.

2. Otherwise, a cut has depth 1 plus the minimum depth over all segments
that touch it.

Thus, every point on a cut of depth k can reach a vertex by a “cut path” with
no more than k turns, a fact that is used centrally in the dynamic programming
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algorithm [OT02]. Movable (nonvertex) anchored cuts have depth 1, because
they touch a polygon edge. Floating cuts have depth ≥ 1. See Fig. 19. Notice

=0 vertex

=1 anchored

>1 floating
movable

depth Cut Types

Figure 19: Classification of cut types.

that cut depth does not distinguish between anchored and floating, because a
floating cut could have both endcaps (the cuts it hits, i.e., on which its endpoints
lie) as vertex cuts, i.e., depth-0 cuts. All cuts of depth ≥ 1 are movable cuts,
for they, unlike vertex cuts, might slide perpendicularly without changing the
structure of the partition.

We already know from Figures 4 and 18 that cuts of depth 1 are sometimes
necessary, for those examples require floating cuts, which are always depth ≥ 1.
It is, however, not entirely obvious that cuts of depth 2 (or larger) are ever
needed. The simplest example we could find is shown in Fig. 20, which requires
a single cut f of depth 2. (That the partition shown is the unique optimal
one is not evident, established in [Tew02, pp.43–51].) In order to achieve a
polynomial-time algorithm, we found it necessary to derive a limit on how deep
into the partition the constraints of the polygon boundary can propagate. The
remainder of our effort is focussed on establishing that cuts of depth 3 or more
are never needed in an optimal partition. This will lead to a polynomial-sized
grid on which the cuts may be placed.

5.1 Movable Cuts Structure

The plan is to detail what must be the local structure of an optimal partition
surrounding a cut of vertex-depth 3 (or more), and then show that this structure
is in fact not optimal: repartitioning will improve it. Let f be a cut of depth
≥ 3. The endcaps l and r of f , and all the cuts that hit f , must be of depth
≥ 2. Moreover, all the cuts touching these hitting cuts must be of depth ≥ 1
and therefore movable. We now show that such collections of movable cuts in an
optimal partition must have a very restricted structure. The intuition is that too
much of the structure is movable to be essential, thus eliminating possibilities.

We start with a simple constraint on interior rectangles.

Lemma 7 In an optimal partition, every rectangle that is bounded by two par-
allel movable cuts, is bounded by the cuts in a “pinwheel” pattern (in either
orientation), as illustrated in Fig. 21(a).

This structure is evident in both Figs. 8 and 18.
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Figure 20: A polygon that requires a floating cut f of depth 2. Cuts l, r, a, and
b are all depth-1, as they touch vertex cuts (which have depth 0).
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Figure 21: (a) A pinwheel of cuts surrounding rectangle R. (b) A non-pinwheel
pattern leads to an improved partition (c).
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Proof: As established by Lemma 1, two cuts must meet in a ‘T’, one cut hits
the other. Let R be bounded by ci, i = 1, 2, 3, 4, with c1 and c3 the two movable
cuts. The intuition is that, because they are movable, they each need to be
“stopped” by hitting cuts, to require R. By Lemma 3, c3 must have a cut c2

hitting it from above. If, contrary to the lemma, c2 also hits c1, then, as shown
in Fig. 21(b), removal of c2 improves the partition (c), so it could not have been
optimal. 2

Now we start to build up the constraints on deep movable cuts.

Lemma 8 If a movable cut has only movable cuts hitting it from one side, then
it has exactly one such cut hitting that side.
Proof: Let f be the “base” movable cut, horizontal without loss of generality.
Lemma 3 establishes that f must have at least one cut hitting it on each side.
In contradiction to the lemma, assume f has two adjacent movable cuts c1 and
c2 hitting f from above. As established by Lemma 3, each movable cut must
be supported by hitting (< δ)-staggered cuts. Thus, c1 must have a cut hitting
it on its right; let a be the lowest such. Finally, let Ri be the rectangle covering
f from above and ci from the right, for i = 1, 2. See Fig. 22(a).

f

a

c1 c2

R1 R2

f

a

c1 c2

R1 R2

(a) (b)

x z

y

Figure 22: Two movable cuts c1 and c2 hitting another movable cut f .

Let x be a point near the lower left corner of R1. Because a is lowest, R1

extends vertically from f to a, including a point y near the intersection of c1

and a. Because c1 and c2 are adjacent, R1 extends horizontally along f to c2,
including a point z near the c2-f intersection. Because R1 includes {x, y, z},
the cut a, which includes the top of R1, must extend rightwards at least to c2.
Thus we know that a meets c2.

As a result of Lemma 1 there are now only two possibilities. We show that
that each is contradictory:

1. c2 hits a; see Fig. 22(a). Then the cuts forming R1 are not aligned in a
pinwheel pattern, violating Lemma 7.

2. a hits c2; see Fig. 22(b). Again the pinwheel lemma is violated.

These contradictions establish the lemma. 2

The structure at the heart of Fig. 20 is necessary:
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R3 ε

Figure 23: Structure of a movable cut f with all touching cuts movable.

Lemma 9 In any optimal partition, every movable cut f that touches only
movable cuts, has the structure indicated in Fig. 23: there are just two hitting
cuts a and b, staggered on f by less than δ, and the endcaps l and r terminate
on cuts as illustrated. Additionlly, the partition must, without loss of generality,
have the following dimensional constraints, where ε = w1 − w2 = w3 − w0:

w1 > w2 ≥ δ

w3 > w0 ≥ δ

with
0 < ε < δ

Proof: Lemma 3 establishes that a movable cut f must be supported by hitting
cuts staggered by < δ. If these are all movable cuts, then by Lemma 8, f must
have just one on each side (a and b). Both endcaps l and r must hit the nearest
cuts supporting a and b; otherwise, the pinwheel Lemma 7 is violated.

We now establish the dimension constraints. Assume without loss of gen-
erality that w2 ≤ w1 ≥ w0. (For if w2 > w1, reflect the figure about f , and
relabel. If w1 < w0, reflect the figure about a and relabel.) If w1 = w2, then a
and b merge and the left half of f is unnecessary. Therefore, the structure of f
must be as illustrated in Fig. 23, and must have the following properties:

w1 > w2 ≥ δ

w3 > w0 ≥ δ

Let δ = min{wi}, i = 0, . . . , 3. If δ were less than ε, then f would not be
supported by (< δ)-staggered cuts; a violation of Lemma 3, hence, 0 < ε < δ.2
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Figure 24: The necessary structure surrounding a cut f of depth ≥ 3 in an
optimal partition.

5.2 Depth-3 Cut Structure

We now specialize the situation to depth-3 cuts. The key to the construction is
that the cuts a and b just illustrated in Fig. 23 are themselves subject to the
constraints of Lemma 9.

Lemma 10 The structure of a cut f of depth ≥ 3 in an optimal partition must
be as shown in Fig. 24:

1. Only one cut hits a and b on both sides.

2. wa ≤ w1 and wb ≤ w3.

Proof: A depth-3 cut f is movable and touches only movable cuts, so Lemma 9
applies and establishes the local structure around f (Fig. 23). Because a and b
are themselves movable, Lemma 8 shows they each can have only be hit by one
movable cut to each side. Therefore, there can only be two rectangles to each
side of a and b, as illustrated.

Suppose wa ≥ w1 in the optimal partition, in contradiction to the claim of
the lemma. Then, as illustrated in Fig. 25, a could slide to the left by ε and
merge with b. As a result of this sliding, the width of the rectangles incident to
a from the right is increased by ε, and the width of the rectangles incident to a
from the left is reduced by ε, but is ≥ w2 (which is unchanged), and thus ≥ δ.
Now a, b, and f could be removed and replaced by a single vertical floating cut
f ′, reducing the number of rectangles in the original partition, and providing
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Figure 25: If wa ≥ w1, then the partition is not optimal.

a superior partition, contradicting the assumed optimality of the partition. An
analogous contradiction arises if wb ≥ w3. Therefore, wa < w1 and wb < w3.

Therefore, the structure of a movable cut f of depth ≥ 3 in an optimal
partition must be as shown in Fig. 24. 2

5.3 Repartitioning Lemma

Finally, we show that the necessary structure surrounding a depth-(≥ 3) cut
just established is suboptimal.

Lemma 11 An optimal partition never includes the structure shown in Fig. 24,
with wa ≤ w1 and wb ≤ w3, for it can always be improved from Fig. 26(a) to (c).

Proof: We rely on Fig. 26 to define pa, ca, sa, pb, cb, and sb. The cut ca can be
vertically extended down from pa until it meets sb, the bottom horizontal side
of R2. Similarly, a cut cb can be vertically extended upward from pb until it
meets sa, the top horizontal side of R0. sa can be horizontally extended leftward
until it meets ca, and sb can be horizontally extended rightward until it meets
cb. This provides a new partition, where the four rectangles covering f can be
replaced by a single rectangle R bounded by {sa, ca, sb, ca}. See Fig. 26. The
width of R, wR, is:

wR = wa + wb − ε

Because wa ≥ δ and wb ≥ δ,

wR ≥ 2δ − ε

wR ≥ δ + (δ − ε)

From Lemma 9, δ > ε, so it follows that wR > δ, and R is an improvement.
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Figure 26: The structure in (a) can be repartitioned as indicated in (b) to the
improved structure shown in (c).
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Figure 27: Extending a vertical cut (such as ca) either increases or leaves the
width of incident rectangles (to the vertical cut) unchanged.
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We now verify that the illustrated partition is indeed an improvement, by
inspecting the effect of each extended cut on the dimensions of the surrounding
rectangles.

Because wa ≤ w1 and w1 > w2, the vertical extension of ca must cut across
the width of two rectangles; R1 and R2. After the repartitioning, these rect-
angles are replaced by R. Since an endcap of f is a movable cut, it can slide
horizontally toward f and merge with the closer of ca or cb. Rectangles sup-
ported by the endcap on the side that faces f are replaced by R, and rectangles
supported on the other side become larger. The width of rectangles incident to
Ra, from whose corner ca is extended, remains unchanged. See Fig. 27.
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Figure 28: Case 1: Extending a side (such as sb) that cuts across a rectangle
that covers f does not diminish the optimality of the partition.

When sb is horizontally extended rightwards to a point on cb, it must cut
across the width of one adjacent rectangle: this could either be a rectangle R3

covering f , or a rectangle touching a rectangle Rb that covers f . In the former
case, shown in Fig. 28, Rb becomes larger by the extension, and R3, which gets
shortened, is eventually replaced by R during the repartitioning process. In
the latter case, Rb’s height will be diminished, but as shown in Fig. 29, it will
remain as large as the height of an adjacent rectangle, Rk in the figure, whose
height δk is > δ and is unaffected by the repartitioning. Therefore there is no
change in the optimality of the partition.

Similar tedious checking shows that the repartioning does not diminish any
rectangle below δ. But it reduces the total number of rectangles by 3 (4 are
replaced by 1). Therefore the original was not optimal. 2

This lemma obviates the need for depth-(≥ 3) cuts:

Theorem 12 An optimal partition never includes a (floating) cut of depth
greater than 2.
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Figure 29: Case 2: Extending a side across a rectangle that touches a rectangle
that covers f , does not diminish the optimality of the partition.

Lemma 11 establishes that there can never be a cut of depth ≥ 3 in an optimal
partition employing floating cuts. Fig. 20 shows an optimal partition that needs
a cut of depth 2, thus establishing that this is the best result possible.

5.4 Combinatorial Lemmas

We need to bound the number of rectangles employed in any optimal partition.
Secondly, we need to bound the number of possible values of δ, and from that
define a finite grid on which the partition may be drawn.

The first bound relies crucially on the depth bound of Theorem 12. Define
kd as the number of cuts of depth exactly d. Define the source endpoint of a
cut as the lower endpoint of a vertical cut, and the left endpoint of a horizontal
cut.

Lemma 13 In an optimal partition, the total number of cuts is O(n): < 12n.
Proof: More precisely, we prove:

k0 < 2n

k1 ≤ 4n

k2 ≤ 6n

The number of reflex vertices in a polygon is < n, and at most 2 cuts (see Fig. 3)
can emanate from each. Therefore k0 < 2n.

To count depth-1 cuts, we charge each to a vertex, and bound the number
of charges received by each vertex. A depth-1 cut c1 must touch a depth-0 cut:
either it is hit by, or it hits such a cut. If c1 is hit by one or more depth-0 cuts
(as are the vertical cuts in Fig. 8), then charge c1 to the vertex of the depth-0
cut that hits c1 closest to c1’s source endpoint. Because each depth-0 cut can
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hit only one cut, a vertex receives a most one charge this way. If c1 is hit only by
cuts of depth > 0, then it must itself terminate on a depth-0 cut c0. We cannot
simply charge c0’s vertex v, however, as many depth-1 cuts could be hitting this
same vertex cut c0. If c1 is the only cut hitting c0 from one side, then charge
c0’s vertex; v can receive at most two charges this way (one from each side of
c0). If there are several (parallel) depth-1 cuts incident to c0 from the same side,
then between each pair there must reside at least one vertex w; otherwise the
pinwheel lemma is violated. See Fig. 30 for one possible structure. Charge c1 to
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Figure 30: Depth-1 cuts b1 and c1 both hit c0, and neither is hit by any depth-0
cut. In this example, b1 charges v and c1 charges w. Numbers adjacent to cuts
indicate their depth.

the vertex w nearest c0 and between c1 and the next parallel depth-1 cut hitting
c0 (b1 in the figure). Because w cannot be closest to more than two vertex cuts,
each vertex could be charged at most twice this way. Counting these along with
the charges to hitting vertex cuts, each vertex receives at most 4 charges from
depth-1 cuts. Thus k1 ≤ 4n.

To bound depth-2 cuts, we charge each either to a depth-1 cut, or to a
vertex. A depth-2 cut c2 must touch a depth-1 cut: either be hit by, or hit such
a cut. If c2 is hit by one or more depth-1 cuts (Lemma 8 establishes that there
can be multiple cuts hitting a side of c2 if at least one of them is not movable),
then charge c2 to the depth-1 cut c1 that hits c2 closest to c2’s source. Each
depth-1 cut can receive at most one charge this way, as it may terminate on
only one cut. If c2 is only hit by depth-2 cuts then one of its endcaps must be
a depth-1 cut c1. Now we are in a situation analogous to that just considered:
It could be that many (parallel) depth-2 cuts hit the same depth-1 cut c1 from
the same side, but again there must be vertices between these parallel cuts.
(One could alter Fig. 30 with additional structure so that there are depth-2
cuts in the two “wells”). In this case, we charge c2 to the vertex w between
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c2 and the adjacent parallel depth-2 cut, just as in the above argument. Each
vertex can again receive at most two charges this way. So, the total number of
charges generated by depth-2 cuts is k1 + 2n. Therefore, k2 ≤ 4n + 2n = 6n,
and k = k0 + k1 + k2 < 12n. 2

There is overestimation at several points in the above argument; we do not
believe the quoted upper bounds can be achieved. It would be of interest to
establish tight bounds.

Theorem 14 An optimal partition consists of O(n) rectangles: < 18n.
Proof: Let R be the number of rectangles, and k be total the number of cuts.
Create 4R charges, and distribute each rectangle’s charges to its four corners.
Each corner coincides with a cut endpoint (treating polygon edges as cuts).
Each cut endpoint can be shared by at most 4 rectangles. A closer analysis
shows a cut endpoint can be shared by at most 3 rectangle corners. First, three
is possible when the endpoint is a vertex, as seen in Fig. 3. Second, Lemma 1
shows that otherwise the endpoint is on the interior of an edge or another cut,
in which case it is shared by two rectangle corners (e.g., in Fig. 6b, the endpoint
of cut d is on the interior of cut b, and is shared by two rectangle corners above
and below, left of b). So each cut endpoint receives at most 3 charges. So
4R ≤ 3(2k). By Lemma 13, k < 12n, and the conclusion follows. 2

5.5 The δ-Graph

The bound on the number of possible values of δ is obtained from the “δ-
graph.” Let P be an optimal partition of polygon P with minimum width δ.
Define Gδ, the δ-graph, to be a graph whose nodes are the segments of the
partition (both cuts and polygon edges), with two nodes connected by an arc
iff the corresponding segments mutually support a rectangle of P of width δ to
either side. A monotonic path in Gδ is a path whose node segments are sorted
horizontally or vertically.

Lemma 15 The δ-graph Gδ of an optimal partition P with minimum width δ
contains a monotonic path both of whose end nodes are either polygon edges or
vertex cuts (i.e., both are cuts of depth 0).

Lemma 15 is manifest in Figures 8, 18, and 20.

Proof: Suppose otherwise. Because P is optimal with width δ, it must contain
some δ-rectangles, which must be supported on both sides. So Gδ contains at
least one arc. Take any connected component of Gδ, and call its leftmost and
rightmost node segments sl and sr, supporting δ-rectangles Rl and Rr. By
assumption, it cannot be that both sl and sr are either polygon edges or vertex
cuts. Without loss of generality, let sl be a nonvertex cut, and so movable. Slide
sl leftward slightly, enlarging Rl; see Fig. 31. A slide distance can be chosen
so that none of the rectangles left of sl become δ wide (which would create a
new arc in Gδ); meanwhile Rl (and other rectangles supported by sl) becomes
wider than δ. The effect is to delete the arc from Gδ corresponding to Rl,
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Figure 31: After sliding sl leftwards, the δ-graph of does not contain an arc
connected to sl.

creating a new, optimal partition with one fewer δ-rectangle. Repeating this
process permits removing all δ-rectangles, which contradicts the premise that
P is optimal. 2

Lemma 16 Let an optimal partition of an n-vertex polygon have minimum
side length δ. Then δ ∈ ∆, where ∆ is a set of rational numbers of cardinality
|∆| = O(n3), and which can be computed in time O(n3).
Proof: By Lemma 15, there is a monotonic path in Gδ between two segments
that are either polygon edges or vertex cuts. Both are on lines containing
polygon edges. Thus the path spans some distance dij , where dij is the distance
between two parallel edges of the polygon ei and ej . By Theorem 14, an optimal
partition contains only O(n) rectangles. Thus δ must be 1/r of dij , with r =
O(n). The set of dij values has cardinality O(n2), and for each we need only
compute dij/r with r = O(n), for each r. 2

Theorem 17 There is an optimal partition whose cuts fall on a subset of O(n4)
gridlines.
Proof: All the cuts can be pushed to the left, and down, so that every cut is,
for some k, kδ to the right (or above) some polygon edge. So for each edge,
as illustrated in Fig. 32, we can put a line at every δ to its right. Lemma 16
establishes that there are O(n3) choices for δ for each cut. The result is O(n3)
gridlines per cut, resulting in O(n4) gridlines overall. 2
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6 Discussion

As mentioned previously, our structural properties, particularly Theorem 12,
which limits cut depth, and Theorem 14, which limits the number of rectangles
in a optimal partition, can be used to support a complex polynomial-time dy-
namic programming algorithm for unrestricted cuts. The idea is to show that
the polygon can be partitioned by a chain of cuts that connect pairs of vertices.
The cut-depth limit permits bounding the length of this chain to at most 10
cuts [Tew02]. This constant-size upper bound, together with the polynomially-
sized grid, leads to the complexity listed in Table 1.

The simplicity of the linear bound of Theorem 14 leads us to suspect there
should be simpler approaches, both to establishing this bound, and for con-
structing an optimal partition. A first step might be to establish a tight constant
for the linear bound. We have no example that needs as many as n rectangles
in an optimal partition, let alone the 18n bound established in Theorem 14.
However, any new insights must still lead to the complicated uniquely optimal
partitions of Figures 18 and 20.

Two natural directions we did not explore, both with practical import, are:
orthogonal polygons with holes (we suspect the problem becomes NP-hard, as
it does in [LPRS82]), and approximation algorithms.
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